2,346 research outputs found

    Large quantum gravity effects: Cylindrical waves in four dimensions

    Get PDF
    Linearly polarized cylindrical waves in four-dimensional vacuum gravity are mathematically equivalent to rotationally symmetric gravity coupled to a Maxwell (or Klein-Gordon) field in three dimensions. The quantization of this latter system was performed by Ashtekar and Pierri in a recent work. Employing that quantization, we obtain here a complete quantum theory which describes the four-dimensional geometry of the Einstein-Rosen waves. In particular, we construct regularized operators to represent the metric. It is shown that the results achieved by Ashtekar about the existence of important quantum gravity effects in the Einstein-Maxwell system at large distances from the symmetry axis continue to be valid from a four-dimensional point of view. The only significant difference is that, in order to admit an approximate classical description in the asymptotic region, states that are coherent in the Maxwell field need not contain a large number of photons anymore. We also analyze the metric fluctuations on the symmetry axis and argue that they are generally relevant for all of the coherent states.Comment: Version accepted for publication in Int. J. Mod. Phys.

    Direct measurement of the 14N(p,g)15O S-factor

    Full text link
    We have measured the 14N(p,g)15O excitation function for energies in the range E_p = 155--524 keV. Fits of these data using R-matrix theory yield a value for the S-factor at zero energy of 1.64(17) keV b, which is significantly smaller than the result of a previous direct measurement. The corresponding reduction in the stellar reaction rate for 14N(p,g)15O has a number of interesting consequences, including an impact on estimates for the age of the Galaxy derived from globular clusters.Comment: 5 pages, 3 figures, submitted to Phys. Rev. Let

    Chemical and stable isotope composition (18O/16O, 2H/1H) of formation waters from the Carabobo Oilfield, Venezuela

    Get PDF
    In this short note, we present the first data on stable isotope composition of the oilfield waters from Carabobo area of the Faja Petrolífera del Orinoco “Hugo Chávez” (Orinoco Oil Belt). From a chemical point of view, the formation waters show a main Na-Cl level (TDS up to 30g/l) with a dilution trend toward Na-HCO3 composition (down to 1g/l). Until now, such a clear net chemical compositional trend was ascribed to a meteoric dilution (fresh/ brackish bicarbonate) of the seawater endmember (the saltiest chloride). The isotope results of this study reveal that the seawater mother water was modified during a high-temperature thrusting event (120–125°C), forming 18O-enriched diagenetic water (up to +4‰), which was diluted in recent times by glacial meltwater and presentday meteoric water. The hypothetical presence of flood by a meteoric paleo-water also offers new hints to explain the low API gravity (<10°API biodegraded, extra heavy oil) and composition of the local crude

    Conductance Distributions in Random Resistor Networks: Self Averaging and Disorder Lengths

    Full text link
    The self averaging properties of conductance gg are explored in random resistor networks with a broad distribution of bond strengths P(g)\simg^{\mu-1}. Distributions of equivalent conductances are estimated numerically on hierarchical lattices as a function of size LL and distribution tail parameter ÎŒ\mu. For networks above the percolation threshold, convergence to a Gaussian basin is always the case, except in the limit ÎŒ\mu --> 0. A {\it disorder length} ΟD\xi_D is identified beyond which the system is effectively homogeneous. This length diverges as ΟDâˆŒâˆŁÎŒâˆŁâˆ’Îœ\xi_D \sim |\mu|^{-\nu} (Îœ\nu is the regular percolation correlation length exponent) as ÎŒ\mu-->0. This suggest that exactly the same critical behavior can be induced by geometrical disorder and bu strong bond disorder with the bond occupation probability ppÎŒ\mu. Only lattices at the percolation threshold have renormalized probability distribution in a {\it Levy-like} basin. At the threshold the disorder length diverges at a vritical tail strength ÎŒc\mu_c as âˆŁÎŒâˆ’ÎŒc∣−z|\mu-\mu_c|^{-z}, with z=3.2±0.1z=3.2\pm 0.1, a new exponent. Critical path analysis is used in a generalized form to give form to give the macroscopic conductance for lattice above pcp_c.Comment: 16 pages plain TeX file, 6 figures available upon request.IBC-1603-01

    Polytopic bis(oxazoline)-based ligands for recoverable catalytic systems applied to the enantioselective Henry reaction

    Get PDF
    Several kinds of polytopic chiral ligands (including ditopic, tritopic and tetratopic), based on the bis(oxazoline) and azabis(oxazoline) motifs, have been tested in the preparation of recoverable catalytic systems for the Henry reaction. The results obtained with the different ligands are, in general, good, but they point to the existence of a delicate balance between the coordinating ability of the ligand, the catalytic activity and the recovery of the catalyst by formation of the coordination polymer, related to the easiness to form oligomeric species in solution

    Modeling the dynamic rupture propagation on heterogeneous faults with rate- and state-dependent friction

    Get PDF
    We investigate the effects of non-uniform distribution of constitutive parameters on the dynamic propagation of an earthquake rupture. We use a 2D finite difference numerical method and we assume that the dynamic rupture propagation is governed by a rate- and state-dependent constitutive law. We first discuss the results of several numerical experiments performed with different values of the constitutive parameters a (to account for the direct effect of friction), b (controlling the friction evolution) and L (the characteristic length-scale parameter) to simulate the dynamic rupture propagation on homogeneous faults. Spontaneous dynamic ruptures can be simulated on velocity weakening (a < b) fault patches: our results point out the dependence of the traction and slip velocity evolution on the adopted constitutive parameters. We therefore model the dynamic rupture propagation on heterogeneous faults. We use in this study the characterization of different frictional regimes proposed by Boatwright and Cocco (1996) based on different values of the constitutive parameters a, b and L. Our numerical simulations show that the heterogeneities of the L parameter affect the dynamic rupture propagation, control the peak slip velocity and weakly modify the dynamic stress drop and the rupture velocity. Moreover, a barrier can be simulated through a large contrast of L parameter. The heterogeneity of a and b parameters affects the dynamic rupture propagation in a more complex way. A velocity strengthening area (a > b) can arrest a dynamic rupture, but can be driven to an instability if suddenly loaded by the dynamic rupture front. Our simulations provide a picture of the complex interactions between fault patches having different frictional properties and illustrate how the traction and slip velocity evolutions are modified during the propagation on heterogeneous faults. These results involve interesting implications for slip duration and fracture energy

    Asymptotic normalization coefficients (nuclear vertex constants) for p+7Be→8Bp+^7Be\to ^8B and the direct 7Be(p,γ)8B^7Be(p,\gamma)^8B astrophysical S-factors at solar energies

    Full text link
    A new analysis of the precise experimental astrophysical S-factors for the direct capture 7Be(p,Îł)^7Be(p,\gamma) 8B^8B reaction [A.J.Junghans et al.Phys.Rev. C 68 (2003) 065803 and L.T. Baby et al. Phys.Rev. C 67 (2003) 065805] is carried out based on the modified two - body potential approach in which the direct astrophysical S-factor, S17(E) {\rm S_{17}(E)}, is expressed in terms of the asymptotic normalization constants for p+7Be→8Bp+^7Be\to ^8B and two additional conditions are involved to verify the peripheral character of the reaction under consideration. The Woods-Saxon potential form is used for the bound (p+7Bep+^7Be)- state wave function and for the p7Bep^7Be- scattering wave function. New estimates are obtained for the ^{\glqq}indirectly measured\grqq values of the asymptotic normalization constants (the nuclear vertex constants) for the p+7Be→8Bp+^7Be\to ^8B and S17(E)S_{17}(E) at E≀\le 115 keV, including EE=0. These values of S17(E)S_{17}(E) and asymptotic normalization constants have been used for getting information about the ^{\glqq}indirectly measured\grqq values of the ss wave average scattering length and the pp wave effective range parameters for p7Bep^7Be- scattering.Comment: 27 pages, 6 figure
    • 

    corecore