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|ABSTRACT |

In this short note, we present the first data on stable isotope composition of the oilfield waters from Carabobo
area of the Faja Petrolifera del Orinoco “Hugo Chédvez” (Orinoco Oil Belt). From a chemical point of view, the
formation waters show a main Na-Cl level (TDS up to 30g/1) with a dilution trend toward Na-HCO, composition
(down to 1g/1). Until now, such a clear net chemical compositional trend was ascribed to a meteoric dilution (fresh/
brackish bicarbonate) of the seawater endmember (the saltiest chloride). The isotope results of this study reveal
that the seawater mother water was modified during a high-temperature thrusting event (120-125°C), forming
80-enriched diagenetic water (up to +4%o), which was diluted in recent times by glacial meltwater and present-
day meteoric water. The hypothetical presence of flood by a meteoric paleo-water also offers new hints to explain
the low API gravity (<10°API biodegraded, extra heavy oil) and composition of the local crude.

KEYWORDS

INTRODUCTION

The Faja Petrolifera del Orinoco “Hugo Chdvez”
(FPOHCh; also known in the literature as ‘“Orinoco
Oil Belt” or “Orinoco Heavy-Oil Belt”) encompasses a
territory of approximately 55,000km? of the East Venezuela
Basin, located in the southern strip of the eastern Orinoco
River Basin in Venezuela. With 1.36 trillion barrels of
oil-in-place, it is the world’s largest onshore oil reserve
(Fiorillo, 1987; Schenk et al., 2009; Petrdleos de Venezuela

Orinoco 0il Belt. Caraboho area. Formation water. Chemical and isotope composition.

S.A.-Corporacion Venezolana del Petréleo, 2013). The
deposition of the oil source rocks occurred on the northern
passive continental margin (Cretaceous to Paleogene).
Since the Oligocene-Miocene, a southward migration of
the oil occurred in the foreland basin during the fold-thrust
belting, which involved a North-South crustal shortening
of 40% or more, forming a flexural forebulge against the
Guyana shield (Talukdar et al., 1988). The main southward
migration of meteoric and connate/formation waters has
been modeled and theorized in several studies (Gallango
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and Parnaud, 1995; Parnaud et al., 1995; Schneider, 2003;
Schneider, 2005). However, an isotopic analysis of the
local oilfield waters was still lacking. In this study, the
origin of the Carabobo’s formation waters is inferred from
the chemical and isotope water composition.

GEOLOGIC OUTLINES

The extraction area of the FPOHCh is subdivided
from West to East in four administrative areas (Fig. I in
the Electronic Appendix): Boyacd and Junin, mainly
located in the western Gudrico sub-basin; and Ayacucho
and Carabobo, mainly located in the eastern Maturin sub-
basin. The water samples of this study were collected
from boreholes within the Monagas state, in the central
sector of the Carabobo area, previously known as Cerro
Negro (Fiorillo, 1987). In this area, the Las Piedras (Upper
Miocene/Pliocene) and Mesa (Pleistocene) sandstone
formations are at the upper part of the stratigraphic column
(Fig. IT in Electronic Appendix). Often undistinguishable,
these formations do not contain hydrocarbons but fresh-
to-brackish groundwater of the Mesa/Las Piedras regional
aquifer (Montero et al., 1998; Petroleos de Venezuela
S.A., 1999; De Freitas and Coronel, 2012). Beneath, the
Freites Formation (Fm.) (Middle Miocene) consists of
shale and sandstones. It conformably overlies the Oficina
Fm. (Middle-Upper Miocene), which represents the most
productive reservoir. It is subdivided in four members
(from base to top): Morichal, Yabo, Jobo, and Pilén.
In particular, the sandstones of the Morichal Member
have the best reservoir quality, with 32% porosity and
10Darcy permeability on average (Lugo et al., 2001).
One interpretation is that these sands deposited in valley
fairways, with valley incision controlled by climate and
sea-level changes, thus forming a transgressive sequence
with fluvial sands at the base and marginal marine sands
near the top (Gary et al., 2001). In the study area, the
Morichal reservoir sands are 100m-thick on average and
unconformable overlie the Precambrian igneous and
metamorphic basement. The top of the basement is located
at a depth of approximatively 850-900m (Santos and
Frontado, 1987; Pérez, 2010; Gil, 2017). Water recharges
came from Serrania del Interior (North) and the Guyana
Shield (South), but in the Oligocene-Miocene reservoir, a
deep groundwater drainage from West to East also occured
(Parnaud er al., 1995; Bartok, 2003; Martinius et al.,
2013). The main geologic structure of the Oficina Fm. is
represented by a regional monocline, striking East-West
and dipping 3°N (the ramp of the peripheral bulge). Normal
faults and fault blocks were caused by lithostatic charges
over the crystalline basement. Minor structures consist of
sequences of uplifted and depressed blocks in alternating
sequences (Santos and Frontado, 1987; Gonzdlez and
Meaza, 2014).
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METHODS

Water samples from thirteen wells, which draw crude
oil from the Oficina (C4—C13) and Freites formations (C1-
C3), were collected during 2014-2016 for physicochemical
and isotope measurements. These wells were chosen
because they were not affected by waterflooding (i.e. use
of water injection to enhance production) and had a water
production higher than 40% (Boschetti et al., 2016). All
water samples were not in emulsion with the crude and
showed spontaneous separation from organic fraction after
24h, except for sample C4. In the latter case, water was
extracted after emulsion destabilization and demulsification
using the procedure described in Boschetti et al. (2016).
Then, all water samples were passed through a funnel
filled with glass wool to guarantee the elimination of crude
residuals. Physicochemical parameters were determined
according to Boschetti et al. (2016). The oxygen and
hydrogen stable isotope ratios of water molecules,
0"0O(H,0) and 0°H(H,0), were analyzed at the Stable
Isotope Laboratory of the Instituto Andaluz de Ciencias de
la Tierra (Consejo Superior de Investigaciones Cientificas-
Universidad de Granada, Granada, Spain) by, a high-
Temperature Conversion/Elemental Analyzer (TC/EA)
coupled online with an Isotope Ratio Mass Spectrometer
(IRMS, Delta XP, Thermo-Finnigan, Bremen). Samples
for isotopic analysis were passed through activated
carbon for organic compounds remotion. After that,
an aliquot of 0.7ul was injected into the reactor of the
elemental analyzer, a ceramic column containing a glassy
carbon tube kept at 1450°C, to produce H, and CO gases
(Sharp et al., 2001; Rodrigo-Naharro et al., 2013). Five
different internal laboratory standards (8'%0; 6°H) IACT-
2 (+7.28%0; +57.42%0), EEZ3B (+1.05%0; +7.90%0), CAN
(-3.70%0; -17.50%0), GR-08 (-8.35%0; -55.00%0) and SN-
06 (-10.61%o; -72.77%0), were employed for instrumental
calibration. These were previously calibrated against
certified international standards from the International
Atomic Energy Agency: V-SMOW, GISP and SLAP (NIST
codes RM8535, RM8536 and RMS8537, respectively).
To avoid memory effects, each sample was analyzed ten
times, discarding the first five results and doing average
on the last five. The calculated precision, after correction
of the mass spectrometer daily drift from previously
calibrated internal standards systematically interspersed
in the analytical batches (Rodrigo-Naharro et al., 2013),
was better than +0.2%o for oxygen and +1%o for hydrogen.
Local groundwater (Mesa/Las Piedras) and surface water
from a river (Rio Morichal) were also analyzed for isotope
composition and chloride concentration.

RESULTS AND DISCUSSION

The obtained results are shown in the Electronic
Appendix (Table I). An additional chemical dataset of
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24 oilfield waters from the Carabobo area, collected and waters plot close to the “marine-side” of the diagram
analyzed during 2017 (Table II, Electronic Appendix) was (Fig. 1). The CI/Br ratio <286mg/1 (211+38) also testifies
also used to interpret the chemical processes. a seawater origin, probably modified by the reaction with
minerals of the basement and/or by ternary mixing between
Chemical composition meteoric water, seawater and a seawater-evaporated brine
(Rosenthal, 1997; McCartney and Rein, 2005; Sonney
When plotted in the Langelier-Ludwig plot (Boschetti, and Vuataz, 2010). Only the sample C1 from the Freites
2011), formation waters from the FPOHCh had a Na-Cl Formation showed a Na-HCO; composition (Fig. 1) and
main composition with brackish to saline Total Dissolved was characterized by a lower TDS 1g/l. The chemical
Solids (TDS) up to approximatively 30g/1, and the saltiest trend depicted in the diagram was consistent with the
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FIGURE 1. Langelier-Ludwig diagram (Boschetti, 2011) of the oilfield waters from Carabobo area (meg/L basis): Na-Cl (triangles: data from Table |, Electronic
Appendix; dark error bars: average and standard deviations from Table Il , Electronic Appendix. Appendices available at www.geologica-acta.com) and Na-
HCO; (squares: C1 sample in the Table |, Electronic Appendix). Dashed lines show the compositional variation trend. Following this trend, the three different
oilfield waters detected in the Junin area (Marcos et al., 2007) are shown by ellipses for comparison purposes: Na-Cl brine (dark gray); Na-HCO; meteoric
(white); mixed (light gray). Dots with arrows show the average and variation trend, respectively, of the shallow (light gray dots) and deep (dark gray dots)
components of the Mesa/LasPiedras aquifer (De Freitas and Coronel, 2012). The Ca-HCO; composition of the Orinoco and Caroni Rivers (X) (Lewis and
Weibezhan, 1981; Lewis et al., 1995) and thermal waters in Monagas state (Hernandez and Sanchez, 2004) are also shown. An exception from the shallow
Ca-HCO;3 composition is represented by Na-HCO; to Na-Cl composition of the Los Bafios thermal spring (+), which is mixed with oil seeps (Urbani, 1989).
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preliminary investigations in the Carabobo area (Pirela et
al., 2008), in the Oficina Member formation waters from
the Anaco Field (central Anzodtegui state; Funkhouser ez
al., 1948) and in the Junin area of the FPOHCh (Marcos
et al., 2007). In all studies concerning the FPOHCh, three
different members were distinguished in the area: Na-Cl
brines, Na-Cl intermediate and Na-HCO; meteoric. Figure
1 shows that the formation waters that are more affected
by the “meteoric Na-HCO; member” compositionally
correspond to the deepest groundwater of the Mesas-Las
Piedra aquifer (De Freitas and Coronel, 2012). As revealed
in the Anaco Fields, groundwater flow could also occur
deeply in the Oficina Formation, as evidenced by pressure
switch (Funkhouser et al., 1948; Tackett, 2008). However,
in comparison with the Oficina Formation, our Carabobo’s
Na-HCO; sample C1 is more closely shifted toward the
Ca-HCO; field, which is the most common composition
of the local shallow groundwater (De Freitas and Coronel,
2012). The Orinoco River (Lewis and Weibezhan, 1981;
Lewis et al., 1995) and most of the thermal waters of
the Monagas state (Herndndez and Sdnchez, 2004) also
showed a Ca-HCO; composition, with the exception of the
H,S-bearing spring of Los Baiios. In the diagram (Fig. 1),
this spring falls within the formation water trend because
it has probably been affected by oil seep (Urbani, 1989).

Isotope composition

Most of the sampled waters plot below the Global
Meteoric Water Line (Gourcy et al., 2007) (Fig. 2A),
clustering between the mean values of the Orinoco River
at Ciudad Bolivar (International Atomic Energy Agency/
World Meteorological Organization, 2017a) and the
seawater and/or porewaters from the Venezuela Basin
(Friedman and Hardcastle, 1973; Lawrence, 1973). The
waters of the first cluster, -35%0<0’H(H,0)<-20%0, fall
close to the area containing the samples of the Maracaibo
Oilfield (Boschetti er al., 2016). However, differently
from this latter, the contribution of meteoric water in the
Carabobo formation waters is probably more important
than an '®O-enriched diagenetic water (Fig. 2A). Indeed,
the Na-HCO; sample C1 showed the most depleted
0’H(H,0), falling between the Morichal and Orinoco
Rivers (Fig. 2A). In the second seawater-derived samples
cluster, -10%0<0*’H(H,0)<0%0, the sample C5 showed a
prominent O-shift on the right side of the water line up
to 0O(H,0)=+4%o. This '"O-enrichment, commonly
associated with water-rock interaction processes, could
be attributed to a diagenetic effect. Accordingly, an
estimated 8'®0 composition between +2%o and +6%o0 was
related to the formation fluids, which precipitate quartz
at a temperature of 100-125°C during the southward
thrusting event (Schneider, 2005). Indeed, when the Na-
Li geothermometer for sedimentary brines (Sanjuan et al.,
2014) was applied to the concentrations of the two elements
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obtained in this study, a mean temperature of 125+5°C
was recorded. This temperature is significantly higher
than the present-day temperature at the bottom hole (not
higher than 60°C, also according to the present-day local
geothermal gradients (Fiorillo, 1987; Quigiada, 2006) but
is consistent with temperatures achieved during the quartz
cementation process during the Miocene thrusting (Roure
et al., 2010). Finally, a deuterium-chloride diagram (Fig.
2B) confirmed that local Na-Cl formation waters derive
from marine porewaters, which were diluted by two main
end-members: diagenetic waters with &*’H(H,0O) similar
to porewater (sample C5), and inflows from present-day
meteoric water (samples C1, C8), e.g. Orinoco River
with &8’H(H,0)=-41%0 (International Atomic Energy
Agency/World Meteorological Organization, 2017b). We
hypothesize that a third end-member could be meltwater
from the last glaciation, with a 8> H(H,O) of approximatively
-145%0 (Ramirez et al., 2003), which probably diluted
sample C12 as similarly expected in different studied sites
(Birkle et al., 2009; Boschetti et al., 2016). As opposed to
other oilfield waters from the study area, this latter sample
falls very close to the Meteoric Water Line (Fig. 2A) and
on the seawater-meltwater binary mixing curve (Fig.
2B), showing a substantially unchanged chloride content
similar to the porewaters. Considering the lack of chloride-
bearing evaporite minerals in the formations at depth,
and according to Warne et al.(2002), this glacial melts-
seawater mixing probably occurred in the Orinoco area at
approximatively 18,000-15,000yrs BP. However, at this
stage of the investigation we cannot exclude the possible
contribution of meteoric paleo-water of different age. For
example, isotope composition of the rainfall during the last
14,000 years was not so different from that of the present-
day, -45%0<0?’H(H,0)<-28%0 and -8 %0<d'80(H,0)<-4%0
(Van Breukelen et al., 2008), thus representing another
potential source of the local formation waters (Fig. 2).

CONCLUSIONS

In this study, a Na-Cl main composition of the
Carabobo oilfield waters from the Morichal Member,
with a dilution trend toward Na-HCO; due to the influx
of diluted and shallow waters, was revealed. These
findings agree in part with the results previously obtained
by other authors (Pirela et al., 2008). The novelty of our
work lies in the discrimination of the isotope signature of
these waters. Our results highlight i) the seawater origin
of the deep Na-Cl endmember, which resembles the
porewaters of the Venezuela Basin; and ii) the presence
of three additional, isotopically different waters, which
can shift the composition of the mother salty porewater
toward a high 8'®O(H,0O) (diagenetic water from quartz
cementation) or low 8*°H(H,O) (meteoric components from
the last glaciation to the present). Such chemical-isotope
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FIGURE 2. A) °H(H,0) vs. 5'80(H,0) and B) chloride (mg/L) vs. 8°H(H,0) diagrams, modified from Boschetti et al. (2016). Na-Cl (triangles) and Na-HCO,
(squares) oilfield waters from Carabobo area (this study) and Lake Maracaibo (dark gray field) (Boschetti et al., 2016) are shown. Global (d=+10) and local
(d=+15) meteoric water lines are shown in A). The mean composition of Orinoco and Caroni rivers (International Atomic Energy Agency/Water Resources
Programme, 2009; International Atomic Energy Agency/World Meteorological Organization, 2017b), Maracay rainwater (International Atomic Energy Agency/
World Meteorological Organization, 2017a), Los Bafios thermal waters (Urbani, 1989) and Late Pleistocene-Holocene rainfall (LP-H light gray field; Van
Breukelen et al., 2008) are plotted in both diagrams. Lake Maracaibo (LM), Lake Valencia (LV) and Lagoon Taguaiguay (LT) are also plotted in both diagrams
to represent the fractionation effect due to evaporation (Boschetti et al., 2016). As opposed to Maracaibo oilfield waters, which showed 80-enrichment due
to clay dehydration, the Carabobo waters show an '#0-shift, probably due to quartz equilibrium during the thrusting event in Maturin Sub-basin, starting
from Venezuela Basin porewater. In the plot B), the inflows of present-day meteoric water (6°H=-43%., Cl=1mg/l) on C8, C1 samples and a hypothetical last
glaciation floodwater (6°H=-145%., Cl=1mg/l) on C12 are also distinguishable. Curves represent binary mixings: numbers in italic are the percentage of the
aforementioned diluting waters. See text for details. The fractionation effect due diagenesis (dashed arrow; Boschetti et al., 2016) and to hydrogen-bearing
gases (solid arrow; Clark, 2015) are also shown in both diagrams.
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differentiation of the waters is the result of a complex
history combined with the particular structural settings of
the studied area (peripheral bulge, stratigraphic pinch-outs,
normal faults). Additional chemical and isotopic analyses
(along with “C data) of waters from the neighbouring
boreholes are necessary to better decipher the paleo-
recharge and provenance of the meteoric waters (i.e.
Serrania del Interior, Guyana Shield, Orinoco). However,
until now, only generic meteoric water was considered in
a hydrodynamic model and biodegradation process during
heavy oil formation (Parnaud et al., 1995; Talwani, 2002).
The flood of the oil reservoir by a meteoric paleo-water
could also help to explain the extreme degradation of the
oil in this area (Larter and Head, 2014).
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FIGURE I. A) Location map of the Faja Petrolifera del Orinoco “Hugo Chavez” (FPOHCh, in white) and sampling area in the Carabobo area, modified
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FIGURE Il. Stratigraphic framework and age for the Carabobo area, modified from (Petréleos de Venezuela S.A., 1999).

TABLE 1. Stratigraphic framework and age for the Carabobo area, modified from (Petréleos de Venezuela S.A., 1999)

“Well Code Formation/Member Depth Main pH TDS Na* K*' Ca®* Mg¥* CI SO HCO; Li* s B* si* Br 5"°0(H,0) 5°H(H,0)

m Composition (g/ll) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (%o vs V-SMOW) (%o vs V-SMOW)
C1-a Freites 544 Na-HCO; - 10 186 79 40 20 81 15 550 - - - 12,2 - -3,1 -34
C1-b Freites - - - - - - - - - - - - - - - - -3,3 -31
c2 Freites - - - - 59 2 - - 103 7,8 1035 - - - - - - -
c3 Freites 429 Na-Cl - 21 762 15 10 30 694 15 553 - <1 39 110 24 - -
Cc4 Oficina/Morichal - Na-ClI - 64 2324 108 28 77 3035 408 408 - - - - - 0,0 -5
C5 Oficina/Morichal - Na-Cl 7,3 85 2639 99 113 53 2727 <5 2854 - 52 - - 105 38 -5
Cc6é Oficina/Morichal 731 Na-Cl - 93 2603 117 80 49 2738 95 3662 15 75 18 109 102 - -
Cc7 Oficina/Morichal 733 Na-ClI - 11,2 4227 142 181 79 5043 53 1500 2,7 12 24 10,6 19,6 - -
c8 Oficina/Morichal - Na-Cl 83 114 3721 101 105 63 4085 89 3232 - 6,6 - - 169 -2,0 -26
Cc9 Oficina/Morichal - Na-Cl 7,8 149 4609 116 174 133 6355 50 3516 -7 - - 269 -1,2 -7
Cc10 Oficina/Morichal 685 Na-Cl - 153 4769 157 191 9 6160 11 3951 2,8 15 35 104 232 - -
Ci11-a Oficina/Morichal - Na-Cl 7,3 228 8126 233 86 166 10765 380 3048 - 33 - - 635 -0,5 -6
C11-b Oficina/Morichal - Na-Cl - 27,6 8893 302 470 43 17200 41 674 - - 24 - 635 1,0 -5
c12 Oficina/Morichal - Na-Cl 7,7 27,7 8402 216 332 156 15018 380 3171 - 40 - - 668 -3,2 -23
C13 Oficina/Morichal - - - - - - - - - - - - - - - - -4,8 -26
MP Mesa/lLas Piedras - - - <1 - - - - 4,4 - - - <1 - - 15 -2,3 -23
RM-a Rio Morichal - Alluvium - - 6,6 <1 - - - - 3,8 - - - <1 - - 1,6 -1,6 -25
RM-b Rio Morichal - Alluvium - - - - - - - - - - - - - - - - -2,9 -27

*a: 2014-2015 sampling; b: 2016 sampling

-:not analyzed

TDS: calculated Total Dissolved Solids

<#: below detection limit
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TABLE Il. Preliminary chemical composition dataset of the Carabobo oilfield waters (2017 sampling campaign)

Code pH TDS Na* K* Cca® Mg* ClI SO, HCO; sr* Br

(g/lL) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mgiL)
P1 - 7 1725 99 64 38 1650 <5 3441 5 -
P2 7,14 8 1486 119 116 39 2182 <5 3276 5 13
P3 7,17 9 3076 189 205 29 4062 <5 1330 12 28
P4 6,86 10 2479 125 199 61 3469 <5 3306 8 22
P5 7,19 10 2934 188 283 18 5526 <5 1312 11 26
P6 7,08 10 3016 137 142 67 3662 <5 3380 7 20
P7 - 11 2846 120 16 44 3585 40 4160 3 -
P8 - 12 3819 203 116 40 6799 <5 1464 9 21
P9 7,22 15 4561 180 314 42 8365 <5 1238 16 34
P10 7,88 16 4742 203 12 101 7908 <5 3331 5 45
P11 7,15 17 4994 160 100 181 8181 <5 3416 12 46
P12 7,53 17 5449 210 97 115 8336 <5 3077 12 52
P13 7,69 18 5230 215 381 69 10900 <5 1220 23 59
P14 7,59 19 5935 228 431 99 10900 <5 1145 23 55
P15 - 20 6366 226 39 105 10500 <5 2494 10 50
P16 - 20 6364 250 72 110 10400 <5 2627 12 52
P17 7,15 21 6614 245 405 131 11800 <5 1770 16 74
P18 6,75 26 7327 251 415 194 15500 <5 1804 39 64
P19 6,83 31 7947 378 144 365 18600 <5 3001 28 89
P20 7,61 31 10200 326 50 102 16300 <5 3527 16 84
P21 - 31 14600 210 245 163 13700 <5 1703 16 -
P22 7,37 32 10132 291 123 181 16900 <5 4020 26 77
P23 - 32 7962 355 170 414 18700 <5 4014 39 87
P24 7,34 36 9685 297 519 554 20500 <5 3666 53 87
awverage 7,3 19 5812 217 194 136 9934 - 2655 17 52
median 7,2 18 5340 210 143 102 9383 - 3039 12 52
st.dev. 0,3 9 3160 74 147 133 5633 - 1039 13 25
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