41 research outputs found

    Two phase transitions in (dx2−y2+is){(d_{x^2-y^2}+is)}-wave superconductors

    Full text link
    We study numerically the temperature dependencies of specific heat, susceptibility, penetration depth, and thermal conductivity of a coupled (dx2−y2+is)(d_{x^2-y^2}+is)-wave Bardeen-Cooper-Schreiffer superconductor in the presence of a weak s-wave component (1) on square lattice and (2) on a lattice with orthorhombic distorsion. As the temperature is lowered past the critical temperature TcT_c, a less ordered superconducting phase is created in dx2−y2d_{x^2-y^2} wave, which changes to a more ordered phase in (dx2−y2+is)(d_{x^2-y^2}+is) wave at Tc1T_{c1}. This manifests in two second-order phase transitions. The two phase transitions are identified by two jumps in specific heat at TcT_c and Tc1T_{c1}. The temperature dependencies of the superconducting observables exhibit a change from power-law to exponential behavior as temperature is lowered below Tc1T_{c1} and confirm the new phase transition.Comment: Latex file, 6 pages, 7 postscript figures, Accepted in Physica

    Universal scaling in BCS superconductivity in three dimensions in non-ss waves

    Full text link
    The solutions of a renormalized BCS equation are studied in three space dimensions in ss, pp and dd waves for finite-range separable potentials in the weak to medium coupling region. In the weak-coupling limit, the present BCS model yields a small coherence length ξ\xi and a large critical temperature, TcT_c, appropriate for some high-TcT_c materials. The BCS gap, TcT_c, ξ\xi and specific heat Cs(Tc)C_s(T_c) as a function of zero-temperature condensation energy are found to exhibit potential-independent universal scalings. The entropy, specific heat, spin susceptibility and penetration depth as a function of temperature exhibit universal scaling below TcT_c in pp and dd waves.Comment: 9 pages of LATEX and 5 post-script figures. Accepted in European Physical Journal

    BCS superconductivity in the van Hove scenario in s and d waves

    Full text link

    Mixing of superconducting dx2−y2d_{x^2-y^2} state with s-wave states for different filling and temperature

    Full text link
    We study the order parameter for mixed-symmetry states involving a major dx2−y2d_{x^2-y^2} state and various minor s-wave states (ss, sxys_{xy}, and sx2+y2s_{x^2+y^2}) for different filling and temperature for mixing angles 0 and π/2\pi/2. We employ a two-dimensional tight-binding model incorporating second-neighbor hopping for tetragonal and orthorhombic lattice. There is mixing for the symmetric ss state both on tetragonal and orthorhombic lattice. The sxys_{xy} state mixes with the dx2−y2d_{x^2-y^2} state only on orthorhombic lattice. The sx2+y2s_{x^2+y^2} state never mixes with the dx2−y2d_{x^2-y^2} state. The temperature dependence of the order parameters is also studied.Comment: 10 pages, 9 figures, accepted in Physica

    Anisotropic Heisenberg model on hierarchical lattices with aperiodic interactions: a renormalization-group approach

    Full text link
    Using a real-space renormalization-group approximation, we study the anisotropic quantum Heisenberg model on hierarchical lattices, with interactions following aperiodic sequences. Three different sequences are considered, with relevant and irrelevant fluctuations, according to the Luck-Harris criterion. The phase diagram is discussed as a function of the anisotropy parameter Δ\Delta (such that Δ=0\Delta=0 and Δ=1\Delta=1 correspond to the isotropic Heisenberg and Ising models, respectively). We find three different types of phase diagrams, with general characteristics: the isotropic Heisenberg plane is always an invariant one (as expected by symmetry arguments) and the critical behavior of the anisotropic Heisenberg model is governed by fixed points on the Ising-model plane. Our results for the isotropic Heisenberg model show that the relevance or irrelevance of aperiodic models, when compared to their uniform counterpart, is as predicted by the Harris-Luck criterion. A low-temperature renormalization-group procedure was applied to the \textit{classical} isotropic Heisenberg model in two-dimensional hierarchical lattices: the relevance criterion is obtained, again in accordance with the Harris-Luck criterion.Comment: 6 pages, 3 figures, to be published in Phys. Rev.

    Field behavior of an Ising model with aperiodic interactions

    Full text link
    We derive exact renormalization-group recursion relations for an Ising model, in the presence of external fields, with ferromagnetic nearest-neighbor interactions on Migdal-Kadanoff hierarchical lattices. We consider layered distributions of aperiodic exchange interactions, according to a class of two-letter substitutional sequences. For irrelevant geometric fluctuations, the recursion relations in parameter space display a nontrivial uniform fixed point of hyperbolic character that governs the universal critical behavior. For relevant fluctuations, in agreement with previous work, this fixed point becomes fully unstable, and there appears a two-cycle attractor associated with a new critical universality class.Comment: 9 pages, 1 figure (included). Accepted for publication in Int. J. Mod. Phys.

    Universal scaling in BCS superconductivity in two dimensions in non-s waves

    Full text link
    The solutions of a renormalized BCS model are studied in two space dimensions in ss, pp and dd waves for finite-range separable potentials. The gap parameter, the critical temperature TcT_c, the coherence length ξ\xi and the jump in specific heat at TcT_c as a function of zero-temperature condensation energy exhibit universal scalings. In the weak-coupling limit, the present model yields a small ξ\xi and large TcT_c appropriate to those for high-TcT_c cuprates. The specific heat, penetration depth and thermal conductivity as a function of temperature show universal scaling in pp and dd waves.Comment: 11 pages, LATEX, 4 postscript figures embedded using eps

    Two phase transitions in (s+id)-wave Bardeen-Cooper-Schrieffer superconductivity

    Full text link
    We establish universal behavior in temperature dependencies of some observables in (s+id)(s+id)-wave BCS superconductivity in the presence of a weak ss wave. There also could appear a second second-order phase transition. As temperature is lowered past the usual critical temperature TcT_c, a less ordered superconducting phase is created in dd wave, which changes to a more ordered phase in (s+id)(s+id) wave at Tc1T_{c1} (<Tc< T_c). The presence of two phase transitions manifest in two jumps in specific heat at TcT_c and Tc1T_{c1}. The temperature dependencies of susceptibility, penetration depth, and thermal conductivity also confirm the new phase transition.Comment: 6 pages, 5 post-script figures

    Non-uniform phases in metals with local moments

    Get PDF
    The two-dimensional Kondo lattice model with both nearest and next-nearest neighbor exchange interactions is studied within a mean-field approach and its phase diagram is determined. In particular, we allow for lattice translation symmetry breaking. We observe that the usual uniform inter-site order parameter is never realized, being unstable towards other more complex types of order. When the nearest neighbor exchange J_1 is ferromagnetic the flux phase is always the most stable state, irrespective of the value of the next-nearest-neighbor interaction J_2. For antiferromagnetic J_1, however, either a columnar or a flux phase is realized, depending on conduction electron filling and the value of J_2.Comment: 5 pages, 7 figure
    corecore