20 research outputs found

    Some Observations on Carbon Nanotubes Susceptibility to Cell Phagocytosis

    Get PDF
    The aim of this study was to assess the influence of different types of carbon nanotubes (CNTs) on cell phagocytosis. Three kinds of carbon nanotubes: single-walled carbon nanohorns (SWCNHs), multiwalled carbon nanotubes (MWCNTs), and ultra-long single-walled carbon nanotubes (ULSWCNTs) before and after additional chemical functionalization were seeded with macrophage cell culture. Prior to biological testing, the CNTs were subjected to dispersion process with the use of phosphate buffered solution (PBS) and PBS containing surfactant (Tween 20) or dimethyl sulfoxide (DMSO). The results indicate that the cells interaction with an individual nanotube is entirely different as compared to CNTs in the form of aggregate. The presence of the surfactant favors the CNTs dispersion in culture media and facilitates phagocytosis process, while it has disadvantageous influence on cells morphology. The cells phagocytosis is a more effective for MWCNTs and SWCNHs after their chemical functionalization. Moreover, these nanotubes were well dispersed in culture media without using DMSO or surfactant. The functionalized carbon nanotubes were easily dispersed in pure PBS and seeded with cells

    Effect of Secondary Carbon Nanofillers on the Electrical, Thermal, and Mechanical Properties of Conductive Hybrid Composites Based on Epoxy Resin and Graphite

    No full text
    In this work, we present a comparative study of the impact of secondary carbon nanofillers on the electrical and thermal conductivity, thermal stability, and mechanical properties of hybrid conductive polymer composites (CPC) based on high loadings of synthetic graphite and epoxy resin. Two different carbon nanofillers were chosen for the investigation—low-cost multi-layered graphene nanoplatelets (GN) and carbon black (CB), which were aimed at improving the overall performance of composites. The samples were obtained by a simple, inexpensive, and effective compression molding technique, and were investigated by the means of, i.a., scanning electron microscopy, Raman spectroscopy, electrical conductivity measurements, laser flash analysis, and thermogravimetry. The tests performed revealed that, due to the exceptional electronic transport properties of GN, its relatively low specific surface area, good aspect ratio, and nanometric sizes of particles, a notable improvement in the overall characteristics of the composites (best results for 4 wt % of GN; σ = 266.7 S cm−1; λ = 40.6 W mK−1; fl. strength = 40.1 MPa). In turn, the addition of CB resulted in a limited improvement in mechanical properties, and a deterioration in electrical and thermal properties, mainly due to the too high specific surface area of this nanofiller. The results obtained were compared with US Department of Energy recommendations regarding properties of materials for bipolar plates in fuel cells. As shown, the materials developed significantly exceed the recommended values of the majority of the most important parameters, indicating high potential application of the composites obtained

    Study of the Carbonization and Graphitization of Coal Tar Pitch Modified with SiC Nanoparticles

    No full text
    Silicon carbide nanoparticles (nSiC) have been used to modify coal tar pitch (CTP) as a carbon binder. The influence of ceramic nanoparticles on the structure and microstructure was studied. The structure of CTP-based carbon residue with various nSiC contents was analyzed by using SEM with EDAX, Raman spectroscopy, and X-ray diffraction. The effect of ceramic nanofiller on the crystallite sizes (Lc, La) and the c-axis spacing (d002) in carbonized samples after heating from 1000 to 2800°C was analyzed. Ceramic nanofillers inhibit structural changes in carbonized samples heated to 1000°C. After heating CTP with nSiC above 2000°C, the carbon samples contained two carbon components differing in structural ordering. Ceramic nanoparticles increase carbon crystallite growth, while their impact on the c-axis spacing is low

    Hierarchical carbon nanofibers/carbon nanotubes/NiCo nanocomposites as novel highly effective counter electrode for dye-sensitized solar cells: A structure-electrocatalytic activity relationship study

    No full text
    Herein, we propose novel, highly effective Pt-free counter electrode (CE) material for dye-sensitized solar cells (DSSC) based on the hierarchical carbon nanofibers/carbon nanotubes/NiCo (eCNF/CNT/NiCoNP) ternary nanocomposites. The materials were obtained by combining the electrospinning technique and CCVD synthesis of carbon nanotubes directly on the surface of eCNF. By using various conditions of the CNT growth, it was possible to obtain series of nanocomposites differing with their morphology, surface chemistry, and structural ordering. The conducted studies unraveled significant correlations between the disordering of the nanocomposites, and their electrocatalytic activity towards reduction of I3−. The investigation methods included i.a. SEM, TEM, XPS, UPS, EDS, XRD, SAED, CV, EIS and J-V characterizations. The counter electrodes based on the nanocomposite synthetized at the lowest CCVD temperature of 700 °C exhibited remarkable catalytical activity as evidenced by very low charge transfer resistance of 0.93 Ω cm2. Based on the obtained data, we propose new, alternative interpretation of the additional minor arc appearing at the high-frequency region of EIS Nyquist spectra of carbon based-CE. The DSSC with eCNF/CNT/NiCoNP-electrodes were characterized by efficiencies up to 7.08% (avg. η = 6.95%), which was higher than for Pt-based devices (avg. η = 6.80%), thus demonstrating excellent performance of prepared CE. Our results confirm that the eCNF/CNT/NiCoNP nanocomposite material is a promising low-cost CE alternative for DSSC.This study has been supported by the National Science Center, Poland, project no. UMO-2019/33/N/ST5/02500.We thank ‘La Caixa’ for the Jr leader grant awarded to S.R. To the Spanish State Research Agency for the grant Self-Power (PID2019-104272RB-C54/AEI/10.13039/501100011033) and the OrgEnergy Excelence Network (CTQ2016-81911- REDT), and to the Agencia de Gestio d’Ajuts Universitaris i de Recerca (AGAUR) for the support to the consolidated Catalonia research group 2017 SGR 329 and the Xarxa d’R + D + I Energy for Society (XRE4S). ICN2 is supported by the Severo Ochoa program from Spanish MINECO (grant no. SEV-2017-0706) and is funded by the CERCA Programme/Generalitat de Catalunya.Peer reviewe

    Effect of MWCNT surface and chemical modification on in vitro cellular response

    Get PDF
    The aim of this study was to evaluate the impact of multi-walled carbon nanotubes (MWCNTs with diameter in the range of 10–30 nm) before and after chemical surface functionalisation on macrophages response. The study has shown that the detailed analysis of the physicochemical properties of this particular form of carbon nanomaterial is a crucial issue to interpret properly its impact on the cellular response. Effects of carbon nanotubes (CNTs) characteristics, including purity, dispersity, chemistry and dimension upon the nature of the cell environment–material interaction were investigated. Various techniques involving electron microscopy (SEM, TEM), infrared spectroscopy (FTIR), inductively coupled plasma optical emission spectrometry, X-ray photoelectron spectroscopy have been employed to evaluate the physicochemical properties of the materials. The results demonstrate that the way of CNT preparation prior to biological tests has a fundamental impact on their behavior, cell viability and the nature of cell–nanotube interaction. Chemical functionalisation of CNTs in an acidic ambient (MWCNT-Fs) facilitates interaction with cells by two possible mechanisms, namely, endocytosis/phagocytosis and by energy-independent passive process. The results indicate that MWCNT-F in macrophages may decrease the cell proliferation process by interfering with the mitotic apparatus without negative consequences on cell viability. On the contrary, the as-prepared MWCNTs, without any surface treatment produce the least reduction in cell proliferation with reference to control, and the viability of cells exposed to this sample was substantially reduced with respect to control. A possible explanation of such a phenomenon is the presence of MWCNT’s agglomerates surrounded by numerous cells releasing toxic substances

    Structure and Biological Properties of Surface-Engineered Carbon Nanofibers

    No full text
    The aim of this work was to manufacture, using the electrospinning technique, polyacrylonitrile- (PAN-) based carbon nanofibers in the form of mats for biomedical applications. Carbon nanofibers obtained by carbonization of the PAN nanofibers to 1000°C (electrospun carbon nanofibers (ECNF)) were additionally oxidized in air at 800°C under reduced pressure (electrospun carbon nanofibers oxidized under reduced pressure (ECNFV)). The oxidative treatment led to partial removal of a structurally less-ordered carbon phase from the near-surface region of the carbon nanofibers. Both types of carbon fibrous mats were studied using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (TEM), XRD, and Raman spectroscopy. The morphology, microstructure, and surface properties of both materials were analyzed. The oxidative treatment of carbon nanofibers significantly changed their surface morphology and physical properties (wettability, surface electrical resistance). Biological tests (genotoxicity, fibroblast, and human osteoblast-like MG63 cultures) were carried out in contact with both materials. Genotoxicity study conducted by means of comet assays revealed significant differences between both carbon nanofibers. Fibroblasts contacted with the as-received carbon nanofibers (ECNF) showed a significantly higher level of DNA damage compared to control and oxidized carbon nanofibers (ECNFV). The ECNFV nanofibers were not cytotoxic, whereas ECNF nanofibers contacted with both types of cells indicated a cytotoxic effect. The ECNFV introduced into cell culture did not affect the repair processes in the cells contacting them

    Influence of Heat Treatment of Electrospun Carbon Nanofibers on Biological Response

    No full text
    The main aim of this study is to investigate the effect of fragmentation of electrospun carbon nanofibers (eCNFs) obtained at different temperatures, i.e., at 750 °C, 1000 °C, 1500 °C, 1750 °C and 2000 °C on the cellular response in vitro. In order to assess the influence of nanofibers on biological response, it was necessary to conduct physicochemical, microstructural and structural studies such as SEM, XPS, Raman spectroscopy, HRTEM and surface wettability of the obtained materials. During the in vitro study, all samples made contact with the human chondrocyte CHON-001 cell lines. The key study was to assess the genotoxicity of eCNFs using the comet test after 1 h or 24 h. Special attention was paid to the degree of crystallinity of the nanofibers, the dimensions of the degradation products and the presence of functional groups on their surface. A detailed analysis showed that the key determinant of the genotoxic effect is the surface chemistry. The presence of nitrogen-containing groups as a product of the decomposition of nitrile groups has an influence on the biological response, leading to mutations in the DNA. This effect was observed only for samples carbonized at lower temperatures, i.e., 750 °C and 1000 °C. These results are important with respect to selecting the temperature of thermal treatment of eCNFs dedicated for medical and environmental functions due to the minimization of the genotoxic effect of these materials

    Surface Modification of Carbon Nanofibers to Improve Their Biocompatibility in Contact with Osteoblast and Chondrocytes Cell Lines

    No full text
    The goal of this study is to investigate the influence of different types of modifiers, such as sodium hyaluronate (NaH), graphene oxide (GO), silica oxycarbide (SiOC) and oxidation process (ox) on physicochemical, morphological, and biological properties of electrospun carbon nanofibers (eCNFs). Scanning electron microscopy, X-ray photoelectron spectroscopy and infrared spectroscopy (FTIR) were used to evaluate the microstructure and chemistry of as-prepared and modified CNFs. The electrical properties of CNFs scaffolds were examined using a four-point probe method to evaluate the influence of modifiers on the volume conductivity and surface resistivity of the obtained samples. The wettability of the surfaces of modified and unmodified CNFs scaffolds was also tested by contact angle measurement. During the in vitro study all samples were put into direct contact with human chondrocyte CHON-001 cells and human osteosarcoma MG-63 cells. Their viability was analysed after 72 h in culture. Moreover, the cell morphology and cell area in contact with CNFs was observed by means of fluorescence microscopy. The obtained results show great potential for the modification of CNFs with polymer, ceramic and carbon modifiers, which do not change the fiber form of the substrate but significantly affect their surface and volume properties. Preliminary biological studies have shown that the type of modification of CNFs affects either the rate of increase in the number of cells or the degree of spreading in relation to the unmodified sample. More hydrophilic and low electrically conductive samples such as CNF_ox and CNF_NaH significantly increase cell proliferation, while other GO and SiOC modified samples have an effect on cell adhesion and thus cell spreading. From the point of view of further research and the possibility of combining the electrical properties of modified CNF scaffolds with electrical stimulation, where these scaffolds would be able to transport electrical signals to cells and thus affect cell adhesion, spreading, and consequently tissue regeneration, samples CNF_GO and CNF_SiOC would be the most desirable
    corecore