1,761 research outputs found

    Profile alterations of a symmetrical light pulse coming through a quantum well

    Full text link
    The theory of a response of a two-energy-level system, irradiated by symmetrical light pulses, has been developed.(Suchlike electronic system approximates under the definite conditions a single ideal quantum well (QW) in a strong magnetic field {\bf H}, directed perpendicularly to the QW's plane, or in magnetic field absence.) The general formulae for the time-dependence of non-dimensional reflection {\cal R}(t), absorption {\cal A}(t) and transmission {\cal T}(t) of a symmetrical light pulse have been obtained. It has been shown that the singularities of three types exist on the dependencies {\cal R}(t), {\cal A}(t), {\cal T}(t). The oscillating time dependence of {\cal R}(t), {\cal A}(t), {\cal T}(t) on the detuning frequency \Delta\omega=\omega_l-\omega_0 takes place. The oscillations are more easily observable when \Delta\omega\simeq\gamma_l. The positions of the total absorption, reflection and transparency singularities are examined when the frequency \omega_l is detuned.Comment: 9 pages, 13 figures with caption

    Polariton Dispersion Law in Periodic Bragg and Near-Bragg Multiple Quantum Well Structures

    Full text link
    The structure of polariton spectrum is analyzed for periodic multiple quantum well structures with periods at or close to Bragg resonance condition at the wavelength of the exciton resonance. The results obtained used to discuss recent reflection and luminescent experiments by M. H\"{u}bner et al [Phys. Rev. Lett. {\bf 83}, 2841 (1999)] carried out with long multiple quantum well structures. It is argued that the discussion of quantum well structures with large number of wells is more appropriate in terms of normal modes of infinite periodic structures rather then in terms of super- and sub- radiant modes.Comment: replaced with a new version, an error in one of the equations is correcte

    An approach for the detection of point-sources in very high resolution microwave maps

    Full text link
    This paper deals with the detection problem of extragalactic point-sources in multi-frequency, microwave sky maps that will be obtainable in future cosmic microwave background radiation (CMB) experiments with instruments capable of very high spatial resolution. With spatial resolutions that can be of order of 0.1-1.0 arcsec or better, the extragalactic point-sources will appear isolated. The same holds also for the compact structures due to the Sunyaev-Zeldovich (SZ) effect (both thermal and kinetic). This situation is different from the maps obtainable with instruments as WMAP or PLANCK where, because of the smaller spatial resolution (approximately 5-30 arcmin), the point-sources and the compact structures due to the SZ effect form a uniform noisy background (the "confusion noise"). Hence, the point-source detection techniques developed in the past are based on the assumption that all the emissions that contribute to the microwave background can be modeled with homogeneous and isotropic (often Gaussian) random fields and make use of the corresponding spatial power-spectra. In the case of very high resolution observations such an assumption cannot be adopted since it still holds only for the CMB. Here, we propose an approach based on the assumption that the diffuse emissions that contribute to the microwave background can be locally approximated by two-dimensional low order polynomials. In particular, two sets of numerical techniques are presented containing two different algorithms each. The performance of the algorithms is tested with numerical experiments that mimic the physical scenario expected for high Galactic latitude observations with the Atacama Large Millimeter/Submillimeter Array (ALMA).Comment: Accepted for publication on "Astronomy & Astrophysics". arXiv admin note: substantial text overlap with arXiv:1206.4536 Replaced version is the accepted one and published in A&

    Elastic Light Scattering by Semiconductor Quantum Dots

    Full text link
    Elastic light scattering by low-dimensional semiconductor objects is investigated theoretically. The differential cross section of resonant light scattering on excitons in quantum dots is calculated. The polarization and angular distribution of scattered light do not depend on the quantum-dot form, sizes and potential configuration if light wave lengths exceed considerably the quantum-dot size. In this case the magnitude of the total light scattering cross section does not depend on quantum-dot sizes. The resonant total light scattering cross section is about a square of light wave length if the exciton radiative broadening exceeds the nonradiative broadening. Radiative broadenings are calculated

    Hydrogen mean force and anharmonicity in polycrystalline and amorphous ice

    Get PDF
    The hydrogen mean force from experimental neutron Compton profiles is derived using deep inelastic neutron scattering on amorphous and polycrystalline ice. The formalism of mean force is extended to probe its sensitivity to anharmonicity in the hydrogen-nucleus effective potential. The shape of the mean force for amorphous and polycrystalline ice is primarily determined by the anisotropy of the underlying quasi-harmonic effective potential. The data from amorphous ice show an additional curvature reflecting the more pronounced anharmonicity of the effective potential with respect to that of ice Ih.Comment: 12 pages, 7 figures, original researc

    Effect of the Spatial Dispersion on the Shape of a Light Pulse in a Quantum Well

    Full text link
    Reflectance, transmittance and absorbance of a symmetric light pulse, the carrying frequency of which is close to the frequency of interband transitions in a quantum well, are calculated. Energy levels of the quantum well are assumed discrete, and two closely located excited levels are taken into account. A wide quantum well (the width of which is comparable to the length of the light wave, corresponding to the pulse carrying frequency) is considered, and the dependance of the interband matrix element of the momentum operator on the light wave vector is taken into account. Refractive indices of barriers and quantum well are assumed equal each other. The problem is solved for an arbitrary ratio of radiative and nonradiative lifetimes of electronic excitations. It is shown that the spatial dispersion essentially affects the shapes of reflected and transmitted pulses. The largest changes occur when the radiative broadening is close to the difference of frequencies of interband transitions taken into account.Comment: 7 pages, 5 figure

    Realistic heterointerfaces model for excitonic states in growth-interrupted quantum wells

    Full text link
    We present a model for the disorder of the heterointerfaces in GaAs quantum wells including long-range components like monolayer island formation induced by the surface diffusion during the epitaxial growth process. Taking into account both interfaces, a disorder potential for the exciton motion in the quantum well plane is derived. The excitonic optical properties are calculated using either a time-propagation of the excitonic polarization with a phenomenological dephasing, or a full exciton eigenstate model including microscopic radiative decay and phonon scattering rates. While the results of the two methods are generally similar, the eigenstate model does predict a distribution of dephasing rates and a somewhat modified spectral response. Comparing the results with measured absorption and resonant Rayleigh scattering in GaAs/AlAs quantum wells subjected to growth interrupts, their specific disorder parameters like correlation lengths and interface flatness are determined. We find that the long-range disorder in the two heterointerfaces is highly correlated, having rather similar average in-plane correlation lengths of about 60 and 90 nm. The distribution of dephasing rates observed in the experiment is in agreement with the results of the eigenstate model. Finally, we simulate highly spatially resolved optical experiments resolving individual exciton states in the deduced interface structure.Comment: To appear in Physical Review

    Simulations of Galactic Cosmic Rays Impacts on the Herschel/PACS Photoconductor Arrays with Geant4 Code

    Get PDF
    We present results of simulations performed with the Geant4 software code of the effects of Galactic Cosmic Ray impacts on the photoconductor arrays of the PACS instrument. This instrument is part of the ESA-Herschel payload, which will be launched in late 2007 and will operate at the Lagrangian L2 point of the Sun-Earth system. Both the Satellite plus the cryostat (the shield) and the detector act as source of secondary events, affecting the detector performance. Secondary event rates originated within the detector and from the shield are of comparable intensity. The impacts deposit energy on each photoconductor pixel but do not affect the behaviour of nearby pixels. These latter are hit with a probability always lower than 7%. The energy deposited produces a spike which can be hundreds times larger than the noise. We then compare our simulations with proton irradiation tests carried out for one of the detector modules and follow the detector behaviour under 'real' conditions.Comment: paper submitted to Experimental Astronomy in March 200

    Pulsed neutron gamma-ray logging in archaeological site survey

    Get PDF
    An archaeological survey method based on neutron gamma-ray logging is described. The method relies on the measurement of capture gamma radiation induced by neutron irradiation from a pulsed generator. This technique provides elemental information on the irradiated zone by spectroscopic analysis of the gamma-ray data. This approach has been studied with Geant4 Monte Carlo simulations. In particular, irradiation volume for a deuterium–deuterium and deuterium–tritium (D-T) neutron generator and sampling volume for the D-T source were estimated. In addition, a neutron log response, which illustrates the capability of the neutron tool to localize artifacts lying beneath the surface, is shown
    • …
    corecore