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Hydrogen mean force and anharmonicity in polycrystalline and amor-

phous ice

A. Parmentiera,∗, C. Andreania,b, G. Romanellic,a, J. J. Shephardd,e, C. G. Salzmannd , and R.

Senesia,b,†

Abstract. The hydrogen mean force from experimental neutron Compton profiles is derived using deep inelastic neutron scatter-

ing on amorphous and polycrystalline ice. The formalism of mean force is extended to probe its sensitivity to anharmonicity in

the hydrogen-nucleus effective potential. The shape of the mean force for amorphous and polycrystalline ice is primarily deter-

mined by the anisotropy of the underlying quasi-harmonic effective potential. The data from amorphous ice show an additional

curvature reflecting the more pronounced anharmonicity of the effective potential with respect to that of ice Ih.

Keywords potential of mean force, neutron Compton profile, nuclear quantum effects, path integral representation, anharmonic-

ity
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1 Introduction

Nuclear quantum effects, such as the zero-point energy and its

interplay with the anharmonic character of the hydrogen bond

(HB), affect a large number of water’s properties ranging from

its microscopic structure and dynamics to its thermodynamic

and chemical behavior [1].

Recently, new experimental and simulation techniques have

been used to probe the quantum state of hydrogen nuclei in

water and water systems by examining the hydrogen nuclear

momentum distribution, n(p), and the hydrogen nuclear mean

kinetic energy, 〈EK〉. These physical quantities are influenced

by quantum effects and can be uniquely accessed via high en-

ergy neutron scattering using the deep inelastic neutron scat-

tering (DINS) technique [2, 3]. The DINS refers to a specific

regime of inelastic neutron scattering in which the incident

neutron energy is well above the binding energies of the scat-

tering atoms. This condition is experimentally achieved at

high energy h̄ω (≥ 1 eV) and momentum h̄q transfers (≥ 25

Å
−1

). It is a specific regime where the neutron-scattering pro-

cess is theoretically described within the framework of the im-

pulse approximation (IA) [3, 4], which is exact in the limit of

infinite momentum transfer, h̄q [5, 6].
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There are several reports on DINS experiments and theoret-

ical studies of n(p) lineshapes and 〈EK〉 values of hydrogen

and light nuclei in water systems and in a variety of other

materials. In particular, n(p) and 〈EK〉 observables are rou-

tinely used to fingerprint changes in the hydrogen bond net-

work in water and water systems. Most recent reviews on the

experimental studies and the use of eV neutron spectroscopy

to investigate the properties of light nuclei in water and com-

plex materials can be found in Ref. [3] and Ref. [7], respec-

tively. DINS measurements of these observables are bench-

marked with the results of electronic density functionals used

in path integral molecular dynamics (PIMD) for the descrip-

tion of hydrogen bonded systems in ab initio numerical simu-

lations [8–12]. The most recent examples are DINS and PIMD

studies in ice and water [13, 14], ice [14, 15], supercritical

water [13, 16], and supercooled water [17]. In these cases,

simulations and DINS experimental results provide new in-

formation on the three-dimensional effective potential energy

surface experienced by the hydrogen nucleus. In this context,

a relevant parameter is the mean force (MF) function, f (x),
which provides an insight into the forces in a molecular sys-

tem and is used to describe the average force acting on an

atomic particle by keeping all other particles in the system

fixed. Indeed, as pointed out by Feynman [18], many prob-

lems of the molecular structure are essentially concerned with

forces, such as the stiffness of chemical bonds and geomet-

rical arrangements due to repulsions and attractions between

atoms.

The mean force is expressed in terms of the spherical end-

to-end distribution, ñ(x), i.e., the Fourier transform of n(p)
[11, 15]. For example, in the DINS and simulation study on

hexagonal ice in Ref. [15], it has been reported how the f (x)

function can be derived from the experimental data and how
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the accuracy required to unambiguously resolve and extract

the effective hydrogen nuclear potential can be evaluated. It

is also shown how the derivation depends on the signal-to-

noise ratio in the DINS count rate. The latter is a consequence

of data uncertainties and error propagation derived from the

sequence of experimental correction routines and data analysis

procedures.

In this study, we extend the formalism of mean force as a

direct, model-independent, non-parametric approach to probe

the experimental sensitivity to anharmonicity in the hydrogen

nuclear effective potential, in order to separate the effects of

anharmonicity from those of molecular anisotropy. This is ap-

plied first to synthetic, spherically averaged, momentum dis-

tribution data from model systems representing the local hy-

drogen environment in harmonic anisotropic potentials, and

then, as a first approximation, by adding anharmonicity along

the bond direction by using a simple Morse potential. Finally,

the formalism is applied to experimental data on amorphous

and polycrystalline ices, showing that the local environment

of the hydrogen nucleus in amorphous ices is characterized

by a more pronounced anharmonicity of the hydrogen nuclear

effective potential, in comparison to that in ice Ih.

2 Response Function from DINS experiments

The IA assumes that the scatterers recoil freely from the col-

lision with neutrons, the inter-particle interaction in the fi-

nal state being negligible. The regime can be regarded as a

special case of the incoherent approximation, where, in the

case of high-energy collisions, a short-time expansion (t → 0)

of the atomic position operator, R(t), is applied to the posi-

tion operator of any scatterer of mass M and momentum p,

i.e., R(t) = R(0)+ t
M

p [3]. By applying the momentum- and

energy-conservation laws, it can be shown that the energy dis-

tribution of the scattered neutrons is directly related to the dis-

tribution of particle momenta parallel to the wave vector trans-

fer q, and the resulting (incoherent) dynamic structure factor

yields:

S(q,ω) = h̄

∫

n(p)δ

(

h̄ω − h̄ωr −
h̄q ·p

M

)

dp (1)

where h̄ω is the energy transfer, and h̄ωr =
h̄2q2

2M
is the recoil

energy.

Using the West scaling formalism, the two dynamic variables

ω and q can be coupled by introducing the West variable y =
1
h̄
p · q̂ = M

h̄2q
(h̄ω − h̄ωr) [3], so that Eq. 1 can be re-written as

S(q,ω) =
M

h̄q
J(y, q̂), (2)

where J(y, q̂) is the response function, or Neutron Compton

Profile (NCP), within the IA framework [2, 3]:

J(y, q̂) = h̄

∫

n(p)δ (h̄y− q̂ ·p)dp. (3)

J(y, q̂) represents the probability that the atomic nucleus has a

momentum parallel to q̂ of magnitude between h̄y and h̄(y+
dy).

For isotropic samples, the momentum distribution only de-

pends on |p|, and the q̂ direction becomes immaterial. Thus,

the NCP is expressed by 2π h̄
∫ ∞
|h̄y| pn(p)d p, and the expression

for n(p) yields:

n(p) =− 1

2π h̄3y

[

dJ(y)

dy

]

h̄y=p

. (4)

The IA is exact only in the limit of infinite wave vector trans-

fer. At finite values of q, deviations occur, which are caused

by the localization of the scatterer in its final state due to sur-

rounding atoms, and are termed final state effects (FSEs). This

causes a broadening of J(y) that resembles an instrumental-

resolution effect [19]. In the presence of FSEs, the J(y)
function shows an additional dependence on q, which in the

isotropic case is expressed as a 1
q

power series [20, 21]:

J(y,q) = J(y)− A3

q

d3J(y)

dy3
+ .... (5)

Currently, DINS measurements are carried out at the VESU-

VIO beamline at the ISIS pulsed neutron and muon source

(Rutherford Appleton Laboratory, Chilton, Didcot, UK) using

the time of flight technique [22]. VESUVIO is the only instru-

ment designed to exploit the DINS technique at high energy-

and momentum transfers.

A DINS experiment on a condensed-water sample yields an

experimental NCP, Fl(y,q), from each l-th detector, for the

hydrogen (or oxygen) nuclei. For each detector element l, the

experimental NCP, due to finite q values in the neutron scat-

tering process, retains the q dependence and is related to the

DINS count rate via the expression:

Fl(y,q) =
BM

E0 I(E0)
qCl(t) (6)

where E0 is the initial energy of the neutron, I(E0) is the inci-

dent neutron flux at energy E0, and B is a constant determined

by taking into account several contributions: the detector solid

angle, its efficiency at the final energy E =E1, the time-energy

Jacobian, the free-atom neutron cross section, and the number

of particles hit by the neutron beam. DINS data sets of all

samples are y-scaled according to Eq. (6).

In a DINS experiment the asymptotic IA profile, strictly valid

in the limit of infinite q (asymptotic regime), is broadened

for each individual l-th detector by finite q corrections terms,
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∆Jl(y,q), known as final state effects (FSEs) and by the instru-

mental resolution function, Rl(y,q) :

Fl(y,q) = [J(y)+∆Jl(y,q)]⊗Rl(y,q). (7)

where Rl(y,q) is determined using standard Monte Carlo rou-

tines available on VESUVIO. This equation is used to describe

the experimental NCP of Eq.(6) for each individual l-th detec-

tor, Fl(y,q). Full details on DINS formalism, description of

operation of the VESUVIO instrument and experimental set

up, experimental corrections and data analysis are reported in

References [15, 17, 23].

3 Potential of Mean Force

The interparticle potential in a condensed system can be ex-

pressed as a sum of pairwise terms which depend on the rela-

tive coordinates between particles. A coordinate R(q̃) is used

to indicate a hydrogen bond, a torsional angle, or linear com-

binations of similar quantities [24]; q̃ is the generalized vector

coordinate, along which the free-energy profile can be deter-

mined.

The free-energy profile, referred to as the Potential of Mean

Force (PMF), is defined as the potential energy arising from

the average force acting between two fixed particles, with the

average taken over the ensemble of configurational states for

the remaining N − 2 particles.

Through the use of R(q̃), one can define the system in a hyper-

surface within the phase space, allowing one to derive the free

energy, FR(R
′), the partition function, ZR(R

′), and the end-to-

end reaction-coordinate distribution function, PR(R
′). These

functions yield [25]:

ZR(R
′) =

1

h3NN!

∫ ∫

e
−H (p̃,q̃)

kBT δ (R′−R(q̃))dp̃dq̃; (8)

PR(R
′) =

ZR(R
′)

Z
=

∫ ∫

e
−H (p̃,q)

kBT δ (R′−R(q̃))dp̃dq̃

∫ ∫

e
−H (p̃,q̃)

kBT dp̃dq̃

; (9)

FR(R
′) =−kBT lnPR(R

′)− kBT lnZ, (10)

with f being the mean force, related to the free energy by f =

− dFR(R
′)

dR′ .

Following Lin et al. [11], one can express both the partition

function and the momentum distribution, n(p), in terms of the

one body density matrix ρ(r,r′) =
〈

r|e−βH |r′
〉

:

Z =

∫

drρ(r,r′) (11)

and

n(p) = 1
(2π h̄)3Z

∫

drdr′e
i
h̄

p·(r−r′)ρ(r,r′) =

=
1

(2π h̄)3

∫

dxe
i
h̄ p·xñ(x) (12)

with

ñ(x) =
1

Z

∫

drdr′δ (r− r′− x)ρ(r,r′). (13)

A viable computational strategy in the investigation of a con-

densed system is the statistical sampling using the Feynman

path integral (PI) representation: ñ(x) is the end-to-end distri-

bution derived by a sum over open paths whereas closed paths

determine ZR(R
′) [26].

In such a representation, the density matrix is expressed by

ρ(r,r′) =
∫

r(0)=r,r(β h̄)=r′
Dr(τ)e

− 1
h̄

∫ β h̄
0 dτ

(

mṙ2(τ)
2 +V [r(τ)]

)

(14)

with β = 1
kBT

.

If the linear transformation r(τ) = r̃(τ)+ y(τ)x is carried out

in the path space, then one can express the NCP in terms of the

distribution ñ(x). This action reshapes the open path r(τ) into

the closed path r̃(τ), with the free particle contribution coming

from the derivative of y(τ). Thus, the end-to-end distribution

is given by:

ñ(x) =
∫

r(0)−r(β h̄)=x Dr(τ)e
− 1

h̄

∫ β h̄
0

dτ

(

mṙ2(τ)
2

+V [r(τ)]

)

∫

r(β h̄)=r(0)Dr(τ)e
− 1

h̄

∫ β h̄
0

dτ

(

mṙ2(τ)
2

+V [r(τ)]

) =

= e
− mx2

2β h̄2

∫

r̃(β h̄)=r̃(0)D r̃(τ)e
− 1

h̄

∫ β h̄
0 dτ

(

m ˙̃r
2
(τ)

2 +V [r̃(τ)]

)

∫

r(β h̄)=r(0)Dr(τ)e
− 1

h̄

∫ β h̄
0 dτ

(

mṙ2(τ)
2 +V [r(τ)]

) . (15)

The equations above allow us to express the NCP in terms of

ñ(x):

J(y, q̂) =
1

2π h̄

∫

dx‖ñ(x‖q̂)e
i
h̄

x‖y
, (16)

with x‖ = x · q̂.

By making use of the primitive approximation [26]:

ñ(x) = e
− mx2

2β h̄2 e−βU(x)
, (17)

the expressions for U(x‖q̂) and the MF, f (x‖q̂), become:

U(x‖q̂) =−
mx2

‖
2β 2h̄2

− 1

β
ln

∫

dyJ(y, q̂)eix‖y (18)

and

f (x‖q̂) =−
mx‖
β 2h̄2

+
1

β

∫ ∞
0 ysin(x‖y)J(y, q̂)dy
∫ ∞

0 dycos(x‖y)J(y, q̂)
, (19)

3



For finite temperature systems, Eq. 17, which is valid for time

step τ = β
N
→ 0, with N the number of virtual replicas [26], is

of particular relevance.

Indeed, the sequence of Feynman-Trotter approximations

to the thermal Feynman path integral for a general non-

relativistic system characterized by a smooth, single-

minimum interaction potential converges pointwise to the

quantum thermal propagator at every non-zero temperature,

but in the zero-temperature limit, for high-order elements of

the sequence, an abrupt “collapse” from the quantum to the

classical ground-state takes place [27]. In other words, for all

finite N-values the T → 0 limit is unphysical. This situation

can be mitigated by either increasing N (which can prove com-

putationally demanding) or implementing any alternative low-

T formulation to Feynman’s original one, such as coherent-

state path integral (CSPI) [28].

In any case, Eq. 18 is an application of Feynman mapping

of the quantum system onto a set of replicas obeying to clas-

sical mechanics, where each particle in a string of replicas is

referred to as a “bead”, and adjacent beads interact via a har-

monic potential of frequency ∼
√

1

β 2h̄2 [29].

It is worth noticing here that the operational temperature

mainly impacts the MF curve in terms of the slope of its local

tangent in x‖ = 0 Å, via the dominant negative addend in Eq.

19.

4 Mean Force in anisotropic harmonic poten-

tials

Previous DINS and simulation studies have described the mo-

mentum distribution of the hydrogen nuclei in water as a

spherical average of a multivariate Gaussian according to [15]

4π p2n(p) =
〈 δ (p−|p|)√

8π3σxσyσz

exp

(

− p2
x

2σ2
x

−
p2

y

2σ2
y

− p2
z

2σ2
z

)

〉

,

(20)

where σz is along the direction of the O-H bond, and σx and

σy are in the plane perpendicular to the direction of the O-H

bond. The set of parameters, σx,y,z, determines the anisotropy

in the momentum distribution line shape, with:

σ2
i =

Mωi

2h̄
coth

(

β h̄ωi

2

)

, (21)

ωi being an effective principal frequency [3, 13].

The spherical average of n(p) in Eq. 20 is carried out over all

possible molecular orientations, explicitly yielding:

n(p) =
1

4π

1

(2π)
3
2

1

σxσyσz

∫ 2π

0
dφ

∫ π

0
[sin(θ )e−

1
2 p2S(θ ,φ)]dθ .

(22)

and the corresponding expression for the NCP is:

J(y)=
h̄

2

1

(2π)
3
2

1

σxσyσz

∫ 2π

0
dφ

∫ π

0
sin(θ )

1

S(θ ,φ)
e−

1
2 S(θ ,φ)h̄2y2

dθ

(23)

where

S(θ ,φ) =
sin2(θ )cos2(φ)

σ2
x

+
sin2(θ )sin2(φ)

σ2
y

+
cos2(θ )

σ2
z

.

(24)

Eqs. 22 and 23 can be evaluated numerically [17].

For an isotropic system, the NCP is a univariate Gaussian, i.e.,

J(y)= 1√
2πσ

e
− y2

2σ2 and the mean force in Eq. (19) yields:

f (x‖q̂)=−
mx‖
β 2h̄2

+
1

β

√
π

4 (2σ2)
3
2 x‖e

− σ2

2 x2
‖

√
π

2
(2σ2)

1
2 e

− σ2

2 x2
‖

=

(

− m

β 2h̄2
+

σ2

β

)

x‖

(25)

This expression for the mean force shows a linear dependence

on the coordinate x‖. Eq. (25) is interpreted as Hooke’s law

governing the “nanospring” that connects two atoms along

the direction of x‖, with k = m

β 2h̄2 − σ 2

β
being the related elas-

tic constant. In the anisotropic case, a three-dimensional har-

monic potential would similarly produce such a linear behav-

ior, when directional distributions are considered.

Therefore, deviations of f (x‖q̂) from linearity provide ev-

idence of underlying anharmonicity of the local potential.

However, in experiments, only the spherically averaged NCP

is accessible in liquids, amorphous solids, and polycrystalline

solids. The effect of the spherical average is to introduce de-

viations from linearity on f (x‖q̂) [11, 15].

This is shown in Figs. 1 and 2, where we report the calculated

hydrogen NCP and MF, respectively, of a model system with

a multivariate Gaussian momentum distribution characterized

by a robust anisotropy (with average variance σaniso at T =100

K), together with the hydrogen NCP and MF of a model sys-

tem with an isotropic momentum distribution at T =100 K, and

σiso = σaniso .

Fig. 2 shows how, while the numerical evaluation performed

on the isotropic system results in a linear MF overlapping the

analytic result from Eq. (25), the MF for the anisotropic har-

monic system only follows the linear trend for small values of

x‖, then shifting to a smoother increase due to the spherical-

averaging process. Here the deviation of the spherical force

from linearity at finite x‖ results from the averaging process

and is not a sign of anharmonicity.

We note that the effect of anisotropy is to introduce a concav-

ity in the MF trend, but the slope of the resulting mean force

is always lower than the slope of the corresponding isotropic

reference system.
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Fig. 1 Hydrogen NCP J(y) for y > 0 at 100 K for: a) a system with

a spherically averaged multivariate Gaussian n(p), with σx = 2.0

Å
−1

, σy = 4.0 Å
−1

, σz = 7.0 Å
−1

, and σ aniso = 4.796 Å
−1

(ma-

genta points); b) a system with a univariate Gaussian n(p), with

σiso = 4.796 Å
−1

(black line).

Thus, in the interpretation of the experimental Compton pro-

files, which result from the contribution of many particles, one

must distinguish the case of an anisotropic harmonic potential

energy surface from that of an anharmonic potential energy

surface. In view of the above, a practical means to identify an-

harmonicity in the experimental data is to compare the slope

of the mean force with that of the corresponding isotropic

model, which can be easily derived from the spherically av-

eraged standard deviations of the neutron Compton profiles.

4.1 Evaluation of anharmonicity along the bond direc-

tion

In this subsection, we show how one can fingerprint anhar-

monicity through the inspection of the mean force.

Let us consider an anisotropic hydrogen-containing system at

T=100 K. We describe the hydrogen n(p) as a spherical av-

erage of an anharmonic contribution along one direction, i.e.,

the z axis, and two harmonic components along x and y, re-

spectively.

Let us suppose that a simple Morse potential is acting along

the O−H covalent bond (z axis), which, in the typical tetra-

hedral arrangement of molecules in condensed water (Fig. 3),

can be represented, to a first approximation, as collinear with

a hydrogen bond.

Of course, this type of modeling neglects the effects caused

by both anharmonic coupling between covalent- and HB vi-

brations (in turn dependent on deviations from collinearity)

and any departure from Morse-like 1D anharmonicity (in fa-

Fig. 2 Hydrogen MF at T =100 K for: a) a system with a spherically

averaged multivariate Gaussian n(p), with σx = 2.0 Å
−1

, σy = 4.0

Å
−1

, σz = 7.0 Å
−1

, and σaniso = 4.796 Å
−1

(magenta points); b) a

system with a univariate Gaussian n(p) with σiso = 4.796 Å
−1

(black

line). The yellow line represents the analytical result from Eq. 25.

vor of a double-well potential), which can occur in stronger

intermolecular hydrogen bonds [30].

If the anharmonic contribution to the eigenfunction φ(p) of

the ground state in the momentum space is represented as

coming from a Morse-oscillator motion [31–33], then the

spherical average of the momentum distribution yields:

n(p) = 1
16π3

2λz−1

σxσyαz h̄
2λz−1
Γ(2λz)

∫ 2π
0 dφ

∫ π
0 dθ×

×



sin(θ )e
− p2

2

(

sin2(θ )cos2(φ )

σ2
x

+
sin2(θ )sin2(φ )

σ2
y

)

∣

∣

∣

∣

Γ

(

λz −
1

2
+ i

pcos(θ )

αzh̄

)∣

∣

∣

∣

2




(26)

and

J(y) = 2π h̄
∫ ∞
|h̄y| pn(p)d p =

= h̄
8π2

2λz−1

σxσyαz h̄
2λz−1
Γ(2λz)

∫ 2π
0 dφ

∫ π
0 sin(θ )dθ ×

×
∫ ∞

|h̄y|



pe
− p2

2

(

sin2(θ )cos2(φ )

σ2
x

+
sin2(θ )sin2(φ )

σ2
y

)

∣

∣

∣

∣

Γ

(

λz −
1

2
+ i

pcos(θ )

αzh̄

)∣

∣

∣

∣

2


 d p.

(27)

We recall here that, since Dz is the depth of the Morse potential

minimum [31], αz is its curvature, and ω0 =

√

2Dzα2
z

M
is the

5



Fig. 3 Schematics of a single water molecule (right) and its tetrahe-

dral arrangement in low-temperature condensed phases (left). O−H

covalent bonds are in green, hydrogen bonds are in black.

harmonic fundamental frequency of the Morse oscillator, then

Dzα
2
z can be derived from the analysis of the experimental line

shapes through the following expression:

σz =

[

M

2h̄

√

2Dzα2
z

M
coth

(

β h̄

2

√

2Dzα2
z

M

)]
1
2

, (28)

where λz =
√

2MDz

αzh̄
is a dimensionless parameter, and either αz

or Dz can be recovered from the literature.

The evaluation of the anharmonic contributions to the Morse

potential shown above can be carried out by considering the

anharmonic constant, xanh =
h̄ω0
4Dz

= h̄αz√
8DzM

= 1
2λz

. Using typ-

ical values of Dz and λz from the literature [34–36] we ob-

tain xanh = 0.032. The resulting behavior of the mean force is

expected to show small differences from the anisotropic har-

monic case. More significant changes in the curvature of the

mean force can be obtained by using xanh = 3.2, although this

choice of the anharmonicity constant implies an almost flat-

bottom potential. The two Morse potentials with xanh = 0.032

and xanh = 3.2 are shown in Fig. 4.

Numerical calculation of J(y) were carried out for the

anisotropic harmonic model, and the anisotropic anharmonic

model with the two anharmonic constants described above;

the corresponding mean forces along the bond (z) direction,

are shown in Fig. 5 below.

As anticipated above, considering a simple Morse poten-

tial along an O−H covalent bond collinear with a hydrogen

bond amounts to neglecting, to a first approximation, a non-

negligible portion of anharmonic behavior.

Fig. 4 Shape of the Morse potential along the z axis for σz = 7.0 Å
−1

,

αz = 2.5 Å
−1

, and Dz = 3212 meV (green line); and for σz = 7.0

Å
−1

, αz = 25 Å
−1

, and Dz = 32.12 meV (blue dashed line).

Indeed, hydrogen bonding normally introduce competing

quantum effects on the vibrational motion of the hydrogen

nucleus in the plane of the water molecule, and perpendic-

ular to it, due to its influence on the interplay between the

O−H stretch and HB bending [1]. These effects produce a

prominent modification of the absorption band of the stretch-

ing mode of the X−H donor group, in terms of a red shift

and spectral broadening [1, 37], which are a manifestation of

the competition between the anharmonic quantum fluctuations

of intramolecular covalent bond stretching and intermolecular

hydrogen-bond bending [1].

In our first- approximation model, any large anharmonic effect

may be modeled by an increase of the anharmonic constant

xanh along the bond direction, reflecting the enhancement of

the non-parabolic character of the vibrational potential [38].

This may lead, for example, to a very shallow model potential

as seen in Fig. 4 (blue curve). Such a potential is clearly

not adequate in describing the quantum state of the hydrogen

nucleus in condensed water phases.

These findings suggest that an improved description of the an-

harmonicity due to the intermolecular hydrogen bonding has

to take into account the non-collinearity of the covalent-bond

and hydrogen-bond directions, in the sense that each hydro-

gen atom should move under at least two non-collinear anhar-

monic potentials, one along the direction of the intramolecu-

lar O−H stretch and one along the intermolecular hydrogen

bond [39]. This model would imply that, differently from the

previous cases, the motion along x-, y-, and z, and the corre-

sponding contributions to the anisotropic n(p) are correlated,

due to the non-collinear potentials along the covalent and hy-
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Fig. 5 Hydrogen MF at T =100 K for: a) a system with a spherically

averaged multivariate Gaussian n(p), with σx = 2.0 Å
−1

, σy = 4.0

Å
−1

, σz = 7.0 Å
−1

, and σaniso = 4.796 Å
−1

(magenta points); b)

same system as in a) with a spherically-averaged n(p) with two har-

monic components along the x and y directions and a small anhar-

monic component, xanh = 0.032, along the z direction (green line);

c) same system as in a) with a spherically-averaged n(p) having two

harmonic components along the x and y directions and a large anhar-

monic component (xanh = 3.2) along z direction (blue triangles). The

black line represents the analytical result along the bond direction

from Eq. (25).

drogen bond directions.

Analogously, an upgrade of potential modeling to an asym-

metric double-well [40] might be an interesting test.

Notwithstanding all of the above considerations, one must no-

tice that the model presented in this paper is already suitable,

in the absence of biases due to the reduction of experimental

data, to offer a practical, first-approximation tool to tell an-

harmonicity of the local potential apart from mere anisotropy.

This is done by assessment of the experimental MF possibly

exceeding the slope of the isotropic linear reference.

5 Application to experimental DINS data

5.1 Amorphous ices

The determination of the hydrogen mean force from DINS

data has been carried out in order to apply the models de-

scribed in the previous sections to the interpretation of exper-

imental data on amorphous and polycrystalline ice samples,

with special attention to the identification of anharmonicities

in the hydrogen nuclear effective potential.

The procedure adopted consists in the use of the single-

detector NCPs, Fl(y,q) = [JIA(y) + ∆Jl(y,q)]⊗ Rl(y,q) (see

equation 7 , and the corresponding final-state-effect contribu-

tions obtained from the previous DINS experiments of Refer-

ences [15, 41]). The single-detector NCPs were corrected for

the final state effects and averaged over the set of individual

detectors, yielding:

ĴR(y) = 〈Fl(y,q)−∆Jl(y,q)〉l . (29)

Full details on the determination of Fl(y,q) and ∆Jl(y,q) can

be found in References [15,41]. The detector-averaged profile,

ĴR(y), contains the broadening due to the instrumental resolu-

tion. The latter is neglected to a first approximation in the

present work, since its contribution is on the order of 15% of

the full width at half maximum of the neutron Compton pro-

files [19]. The hydrogen mean forces for the amorphous and

polycrystalline samples are then determined by a numerical

evaluation of Equation 19 applied to ĴR(y) for each sample.

At first we derive the mean force using DINS data from amor-

phous ices at T = 80 K and standard pressure [41], namely,

very-high-density (vHDA), unannealed high-density (uHDA),

and low-density (LDA) amorphous ices, respectively. The re-

sults, plotted in Fig. 6, are compared to model profiles from a

univariate (1D) Gaussian momentum distribution with a stan-

dard deviation equal to the spherically averaged standard de-

viation, σAI , found in Reference [41], that is, σ = σAI (Eq.

25).

Fig. 6 shows that the hydrogen MFs in amorphous ices are

characterized by a non-linear behavior, with slopes at interme-

diate x exceeding those of the corresponding isotropic mod-

eling with σ = σAI . In view of the calculations and figures
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Fig. 6 Left panel: hydrogen MF along q̂ for vHDA (top, confidence region in yellow), uHDA (center, confidence region in magenta), and LDA

(bottom, confidence region in blue), respectively, at T =80 K. The linear isotropic reference is obtained using a 1D Gaussian with σ = σ AI

(black). The turquoise line appearing in the plot for vHDA represents the mean force calculated using the detector-averaged resolution profile

as experimental data. AI densities signaled in the three plots are those reported in [41]. Right panel: the same hydrogen MFs divided by

the linear MF for the isotropic reference, in order to enhance MF curvature differences - with respect to the reference itself - as a function of

density.

The x‖-axis in each plot starts from 0.002 Å since the point in the origin has zero error. This is caused by error bars computed by error

propagation from J(y) alone.
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in Section 2, they provide evidence of anisotropic, as well as

anharmonic, local environment for hydrogen nuclei. The right

panel of Fig. 6 clearly shows that, as density decreases (vHDA

−→ uHDA −→ LDA) and within the experimental error, the

local radius of curvature of the MF becomes smaller, or the x‖-

range over which the MF is placed above its sample-specific

isotropic reference becomes larger. This suggests that, in har-

mony with findings from inelastic and deep inelastic scatter-

ing measurements reported in Ref. [41], the hydrogen local

environment in amorphous ices is characterized by an anhar-

monic character of the local potential, which goes beyond

mere anisotropy, and decreases as density increases. This be-

havior is consistent with the structural differences found in

the various forms of amorphous ices: indeed, all molecules in

amorphous ices are hydrogen-bonded to four approximately

tetrahedrally arranged neighbors (the ’Walrafen pentamer’).

HDA holds an additional molecule (at a similar distance) not

directly hydrogen bonded to the central molecule and located

in between its first and second coordination shell; vHDA

then holds two interstitial molecules [42, 43]. We note that

the structure of uHDA has recently been described as a “de-

railed” state along the ice I to ice IV pathway [44]. This

picture is consistent with a longer average O−O distance be-

tween hydrogen-bonded molecules for vHDA (2.85 Å) than

for uHDA (2.82 Å); an even shorter distance is found for LDA

(2.77 Å) [45], in spite of a decrease in density and in the hy-

drogen mean kinetic energy [41].

In conclusion, as the hydrogen bonds weaken with increasing

density, the effective potential becomes less and less anhar-

monic and its shape becomes similar to the shapes inferred

from other spectroscopic techniques within the harmonic as-

sumption [38]. This is consistent with recent findings on LDA

and HDA from 2D IR spectroscopy [46].

5.2 Hexagonal ice Ih

An early application of the MF formalism described in sec-

tion 3 can be found in Ref. [15], concerning DINS data from

a polycrystalline sample of ice Ih at 271 K and standard pres-

sure.

In order to assess whether the anharmonic behavior reported

above might be resulting from systematic experimental con-

tributions, we report below the determination of the hydrogen

mean force for a polycrystalline ice sample from a DINS mea-

surement at 71 K and standard pressure [14].

According to the literature [34], polycrystalline ice Ih is ex-

pected to be a quasi-harmonic system, especially at low tem-

perature, with a small amount of anisotropy stemming from

molecular orientations in the crystal.

The MF derived from experimental DINS data for this system

seems to confirm the above picture: as reported in Fig. 7, bot-

tom panel, within experimental uncertainties the mean force

Fig. 7 Top: Numerically evaluated hydrogen MF along q̂ for ice Ih at

271 K and standard pressure (dark blue-green confidence region). In

black we report the linear model obtained using a 1D Gaussian with

σ = σ Ih. Red full points represent the numerically evaluated MF

of a spherically averaged harmonic anisotropic model system char-

acterized by σx = 3.7 Å
−1

, σy = 4.3 Å
−1

, and σx = 6.5 Å
−1

[15].

Bottom: Numerically evaluated hydrogen MF along q̂ for ice Ih at

71 K and standard pressure (green confidence region). In black we

report the linear model obtained using a 1D Gaussian with σ = σ Ih.
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in polycrystalline ice Ih at 71 K does not show anharmonic

behavior.

6 Conclusions

This paper presents a new procedure to obtain information on

the hydrogen-nucleus energy surface in water by directly ex-

pressing the mean force function, f (x), in terms of the neu-

tron Compton profiles measured in DINS experiments, beyond

what was introduced by Lin et al. in [11]. The new formalism

is illustrated and applied to experimental DINS data in a va-

riety of low-temperature condensed phases of water. The cal-

culations on model systems allow to obtain a practical tool to

identify anharmonicity in the hydrogen-nucleus effective po-

tential, and to distinguish the case of an anisotropic harmonic

potential from that of an anharmonic potential, by simple in-

spection of the concavity and slope of the mean force.

By applying the above tools to the experimental data from

DINS measurements, it is found that the shape of the mean

force for amorphous and polycrystalline ice is primarily de-

termined by the anisotropy of the underlying quasi-harmonic

effective potential, and that data from amorphous ice show

an additional curvature reflecting the more pronounced anhar-

monicity of the hydrogen-nucleus effective potential, with re-

spect to that of ice Ih.

The present work joins the stream of efforts to better under-

stand the relation between the experimental momentum distri-

bution and the atomic/molecular environment: a challenging

task, though crucial to the study of condensed matter and wor-

thy of development.

We plan to further refine the proposed approach to better for-

malize the role of molecular hydrogen bonding with the aim of

quantitative determinations of the anharmonicities of atomic

local potentials.
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