80 research outputs found

    Composição E Diversidade De Anuros Na Restinga Do Município De Conde, Litoral Norte Do Estado Da Bahia, Nordeste Do Brasil

    Get PDF
    The Conde municipality is located in the northern coast of the state of Bahia (NC), northeastern Brazil, and is part of the Atlantic Tropical domain. The anuran fauna of the northern portion of the NC is still poorly known if compared to the southern portion. The Restinga is one of the predominant environments of the coastal plains of the NC and it is characterized essentially by presenting sandy soil covered by herbaceous and shrubby vegetation. The objective of this study was to determine the anuran species composition and diversity for the Restinga of the Conde municipality. Sampling was carried out at night by active search over four periods of five consecutive days each, two over the ‘main rainy season’ and two in a ‘lesser rainy season’, using 14 sample units (SUs) and five extra sample plots (EPs). We calculated dominance and species diversity using the Berger-Parker and Shannon-Wiener H’ indices, respectively. We used accumulation curves and the Jackknife 1 estimator to estimate anuran species richness, considering only the data obtained from the SUs. We recorded 713 anuran specimens distributed within 33 species, 13 genera and five families (Bufonidae, Craugastoridae, Hylidae, Leptodactylidae and Microhylidae). The Hylidae and Leptodactylidae families had the highest species richness. Considering only the SUs (Jackknife 1 estimator in brackets), we recorded 28 species in the study area (33.9 ± 2.3), 13 in Shrubby Vegetation Zones-SVZ (20.8 ± 2.9) and 25 in Freshwater Wetland Zones-FWZ (28.9 ± 1.9). The abundance and species diversity of the FWZ (n = 638 specimens; H’= 2.4) were higher than those recorded for the SVZ (n = 52 specimens; H’ = 1.9). The SVZ and FWZ showed distinct dominant species, wherein Pristimantis paulodutrai was the dominant species in SVZ and Scinax fuscomarginatus in FWZ. The Restinga of the Conde municipality stands out as the one with the highest anuran species richness already recorded considering only SVZ and FWZ. Moreover, its anuran species composition represented 55% of the anuran species known for the NC and included taxa common to three different morphoclimatic domains (Tropical Atlantic, Cerrado and Caatinga). © 2016, Universidade Estadual de Campinas UNICAMP. All rights reserved.16

    Energetic analysis in compost dairy barn: a case study in southeastern Brazil

    Get PDF
    Received: February 2nd, 2023 ; Accepted: March 25th, 2023 ; Published: August 16th, 2023 ; Correspondence: [email protected], [email protected] efficiency aims to optimize the energy consumption of the processes, activities, and machinery of the farm, ensuring the comfort, handling, and safety of the animals. The purpose of the study was to identify the energy consumption demanded by the activities performed at the Compost Dairy Barn facility, located in Itaguara, Minas Gerais, Brazil and to propose energysaving alternatives, applying the Energy Audit Methodology described by the Institute for Energy Diversification and Saving (IDAE in Spanish) from Spain. The energy assessment at the facility allowed us to recognize unnecessary energy expenses in machinery uses, variations in milk production in relation to environmental conditions, waste disposal, and to propose improvement alternatives to reduce energy consumption expenses. Waste production data of 1577.7 kg per year was obtained, which corresponds to the bedding and feeding areas, and 175 kg of waste for the feeding area. Data on the temperature and humidity of the bedding area were collected to determine which of the five months of research is the most demanding in terms of energy. To maintain the animal’s welfare, tracing the times of substantial use of machinery (e.g., fans, tractors) at the facility and calculating Equivalent Temperature Index (ETI) was necessary. The highest percentage consumption of energy was represented by tractors in bedding maintenance and supply, by around 95.03%. The energy analysis of the farm showed a reduction in energy consumption of 45.03%, compared to the initial consumption percentages of the overall livestock activity

    An EST-based analysis identifies new genes and reveals distinctive gene expression features of Coffea arabica and Coffea canephora

    Get PDF
    Background: Coffee is one of the world’s most important crops; it is consumed worldwide and plays a significant role in the economy of producing countries. Coffea arabica and C. canephora are responsible for 70 and 30% of commercial production, respectively. C. arabica is an allotetraploid from a recent hybridization of the diploid species, C. canephora and C. eugenioides. C. arabica has lower genetic diversity and results in a higher quality beverage than C. canephora. Research initiatives have been launched to produce genomic and transcriptomic data about Coffea spp. as a strategy to improve breeding efficiency. Results: Assembling the expressed sequence tags (ESTs) of C. arabica and C. canephora produced by the Brazilian Coffee Genome Project and the Nestlé-Cornell Consortium revealed 32,007 clusters of C. arabica and 16,665 clusters of C. canephora. We detected different GC3 profiles between these species that are related to their genome structure and mating system. BLAST analysis revealed similarities between coffee and grape (Vitis vinifera) genes. Using KA/KS analysis, we identified coffee genes under purifying and positive selection. Protein domain and gene ontology analyses suggested differences between Coffea spp. data, mainly in relation to complex sugar synthases and nucleotide binding proteins. OrthoMCL was used to identify specific and prevalent coffee protein families when compared to five other plant species. Among the interesting families annotated are new cystatins, glycine-rich proteins and RALF-like peptides. Hierarchical clustering was used to independently group C. arabica and C. canephora expression clusters according to expression data extracted from EST libraries, resulting in the identification of differentially expressed genes. Based on these results, we emphasize gene annotation and discuss plant defenses, abiotic stress and cup quality-related functional categories. Conclusion: We present the first comprehensive genome-wide transcript profile study of C. arabica and C. canephora, which can be freely assessed by the scientific community at http://www.lge.ibi.unicamp.br/ coffea. Our data reveal the presence of species-specific/prevalent genes in coffee that may help to explain particular characteristics of these two crops. The identification of differentially expressed transcripts offers a starting point for the correlation between gene expression profiles and Coffea spp. developmental traits, providing valuable insights for coffee breeding and biotechnology, especially concerning sugar metabolism and stress tolerance

    Comparative analysis of the secretome and interactome of Trypanosoma cruzi and Trypanosoma rangeli reveals species specific immune response modulating proteins

    Get PDF
    Chagas disease, a zoonosis caused by the flagellate protozoan Trypanosoma cruzi, is a chronic and systemic parasitic infection that affects ~5–7 million people worldwide, mainly in Latin America. Chagas disease is an emerging public health problem due to the lack of vaccines and effective treatments. According to recent studies, several T. cruzi secreted proteins interact with the human host during cell invasion. Moreover, some comparative studies with T. rangeli, which is non-pathogenic in humans, have been performed to identify proteins directly involved in the pathogenesis of the disease. In this study, we present an integrated analysis of canonical putative secreted proteins (PSPs) from both species. Additionally, we propose an interactome with human host and gene family clusters, and a phylogenetic inference of a selected protein. In total, we identified 322 exclusively PSPs in T. cruzi and 202 in T. rangeli. Among the PSPs identified in T. cruzi, we found several trans-sialidases, mucins, MASPs, proteins with phospholipase 2 domains (PLA2-like), and proteins with Hsp70 domains (Hsp70-like) which have been previously characterized and demonstrated to be related to T. cruzi virulence. PSPs found in T. rangeli were related to protozoan metabolism, specifically carboxylases and phosphatases. Furthermore, we also identified PSPs that may interact with the human immune system, including heat shock and MASP proteins, but in a lower number compared to T. cruzi. Interestingly, we describe a hypothetical hybrid interactome of PSPs which reveals that T. cruzi secreted molecules may be down-regulating IL-17 whilst T. rangeli may enhance the production of IL-15. These results will pave the way for a better understanding of the pathophysiology of Chagas disease and may ultimately lead to the identification of molecular targets, such as key PSPs, that could be used to minimize the health outcomes of Chagas disease by modulating the immune response triggered by T. cruzi infection
    corecore