13,836 research outputs found

    The influence of statistical properties of Fourier coefficients on random surfaces

    Full text link
    Many examples of natural systems can be described by random Gaussian surfaces. Much can be learned by analyzing the Fourier expansion of the surfaces, from which it is possible to determine the corresponding Hurst exponent and consequently establish the presence of scale invariance. We show that this symmetry is not affected by the distribution of the modulus of the Fourier coefficients. Furthermore, we investigate the role of the Fourier phases of random surfaces. In particular, we show how the surface is affected by a non-uniform distribution of phases

    Analytical results for long time behavior in anomalous diffusion

    Full text link
    We investigate through a Generalized Langevin formalism the phenomenon of anomalous diffusion for asymptotic times, and we generalized the concept of the diffusion exponent. A method is proposed to obtain the diffusion coefficient analytically through the introduction of a time scaling factor λ\lambda. We obtain as well an exact expression for λ\lambda for all kinds of diffusion. Moreover, we show that λ\lambda is a universal parameter determined by the diffusion exponent. The results are then compared with numerical calculations and very good agreement is observed. The method is general and may be applied to many types of stochastic problem

    Localization properties of a tight-binding electronic model on the Apollonian network

    Get PDF
    An investigation on the properties of electronic states of a tight-binding Hamiltonian on the Apollonian network is presented. This structure, which is defined based on the Apollonian packing problem, has been explored both as a complex network, and as a substrate, on the top of which physical models can defined. The Schrodinger equation of the model, which includes only nearest neighbor interactions, is written in a matrix formulation. In the uniform case, the resulting Hamiltonian is proportional to the adjacency matrix of the Apollonian network. The characterization of the electronic eigenstates is based on the properties of the spectrum, which is characterized by a very large degeneracy. The 2π/32\pi /3 rotation symmetry of the network and large number of equivalent sites are reflected in all eigenstates, which are classified according to their parity. Extended and localized states are identified by evaluating the participation rate. Results for other two non-uniform models on the Apollonian network are also presented. In one case, interaction is considered to be dependent of the node degree, while in the other one, random on-site energies are considered.Comment: 7pages, 7 figure

    Importance of Granular Structure in the Initial Conditions for the Elliptic Flow

    Full text link
    We show effects of granular structure of the initial conditions (IC) of hydrodynamic description of high-energy nucleus-nucleus collisions on some observables, especially on the elliptic-flow parameter v2. Such a structure enhances production of isotropically distributed high-pT particles, making v2 smaller there. Also, it reduces v2 in the forward and backward regions where the global matter density is smaller, so where such effects become more efficacious.Comment: 4 pages, 5 figure
    corecore