35,807 research outputs found
Corporatism and Economic Performance
This paper models corporatism as affecting both the preferences of the parties involved as well as the rules of the game. The analysis is conducted in a union-government game on determining wages and unemployment benefits. The result indicates that international conditions might be important for the functions of the concept of corporatism. It may also serve as an explanation to the poor performance on production and employment in some of the former so successful European corporatist states in the 1990s. The implication of this is that corporatism might not be a successful social organisation in the globalised economy.Corporatism; Interest groups; Labour unions
Sets in Excess Demand in Ascending Auctions with Unit-Demand Bidders
This paper analyzes the problem of selling a number of indivisible items to a set of unitdemand bidders. An ascending auction mechanism called the Excess Demand Ascending Auction (EDAA) is defined. The main results demonstrate that EDAA terminates in a finite number of iterations and that the exact auction mechanism in Demange, Gale and Sotomayor (J. Polit. Economy 94: 863–872, 1986) and its modification based on the Ford- Fulkerson method, proposed by Sankaran (Math. Soc. Sci. 28: 143–150, 1994), reduce to special cases of EDAA.Multi-item auction;Unit-demand bidders;Excess demand;Algorithms
Buoyancy and g-modes in young superfluid neutron stars
We consider the local dynamics of a realistic neutron star core, including
composition gradients, superfluidity and thermal effects. The main focus is on
the gravity g-modes, which are supported by composition stratification and
thermal gradients. We derive the equations that govern this problem in full
detail, paying particular attention to the input that needs to be provided
through the equation of state and distinguishing between normal and superfluid
regions. The analysis highlights a number of key issues that should be kept in
mind whenever equation of state data is compiled from nuclear physics for use
in neutron star calculations. We provide explicit results for a particular
stellar model and a specific nucleonic equation of state, making use of cooling
simulations to show how the local wave spectrum evolves as the star ages. Our
results show that the composition gradient is effectively dominated by the
muons whenever they are present. When the star cools below the superfluid
transition, the support for g-modes at lower densities (where there are no
muons) is entirely thermal. We confirm the recent suggestion that the g-modes
in this region may be unstable, but our results indicate that this instability
will be weak and would only be present for a brief period of the star's life.
Our analysis accounts for the presence of thermal excitations encoded in
entrainment between the entropy and the superfluid component. Finally, we
discuss the complete spectrum, including the normal sound waves and, in
superfluid regions, the second sound.Comment: 29 pages, 9 figures, submitted to MNRA
Robustness to Strategic Uncertainty (Revision of DP 2010-70)
We model a player’s uncertainty about other players’ strategy choices as smooth probability distributions over their strategy sets. We call a strategy profile (strictly) robust to strategic uncertainty if it is the limit, as uncertainty vanishes, of some sequence (all sequences) of strategy profiles, in each of which every player’s strategy is optimal under under his or her uncertainty about the others. We derive general properties of such robustness, and apply the definition to Bertrand competition games and the Nash demand game, games that admit infinitely many Nash equilibria. We show that our robustness criterion selects a unique Nash equilibrium in the Bertrand games, and that this agrees with recent experimental findings. For the Nash demand game, we show that the less uncertain party obtains the bigger share.Nash equilibrium;refinement;strategic uncertainty;price competition;Bertrand competition;bargaining;Nash demand game
Verifying black hole orbits with gravitational spectroscopy
Gravitational waves from test masses bound to geodesic orbits of rotating
black holes are simulated, using Teukolsky's black hole perturbation formalism,
for about ten thousand generic orbital configurations. Each binary radiates
power exclusively in modes with frequencies that are
integer-linear-combinations of the orbit's three fundamental frequencies. The
following general spectral properties are found with a survey of orbits: (i)
99% of the radiated power is typically carried by a few hundred modes, and at
most by about a thousand modes, (ii) the dominant frequencies can be grouped
into a small number of families defined by fixing two of the three integer
frequency multipliers, and (iii) the specifics of these trends can be
qualitatively inferred from the geometry of the orbit under consideration.
Detections using triperiodic analytic templates modeled on these general
properties would constitute a verification of radiation from an adiabatic
sequence of black hole orbits and would recover the evolution of the
fundamental orbital frequencies. In an analogy with ordinary spectroscopy, this
would compare to observing the Bohr model's atomic hydrogen spectrum without
being able to rule out alternative atomic theories or nuclei. The suitability
of such a detection technique is demonstrated using snapshots computed at
12-hour intervals throughout the last three years before merger of a kludged
inspiral. Because of circularization, the number of excited modes decreases as
the binary evolves. A hypothetical detection algorithm that tracks mode
families dominating the first 12 hours of the inspiral would capture 98% of the
total power over the remaining three years.Comment: 18 pages, expanded section on detection algorithms and made minor
edits. Final published versio
Structure and function of negative feedback loops at the interface of genetic and metabolic networks
The molecular network in an organism consists of transcription/translation
regulation, protein-protein interactions/modifications and a metabolic network,
together forming a system that allows the cell to respond sensibly to the
multiple signal molecules that exist in its environment. A key part of this
overall system of molecular regulation is therefore the interface between the
genetic and the metabolic network. A motif that occurs very often at this
interface is a negative feedback loop used to regulate the level of the signal
molecules. In this work we use mathematical models to investigate the steady
state and dynamical behaviour of different negative feedback loops. We show, in
particular, that feedback loops where the signal molecule does not cause the
dissociation of the transcription factor from the DNA respond faster than loops
where the molecule acts by sequestering transcription factors off the DNA. We
use three examples, the bet, mer and lac systems in E. coli, to illustrate the
behaviour of such feedback loops.Comment: 8 pages, 4 figure
Relativistic Two-stream Instability
We study the (local) propagation of plane waves in a relativistic,
non-dissipative, two-fluid system, allowing for a relative velocity in the
"background" configuration. The main aim is to analyze relativistic two-stream
instability. This instability requires a relative flow -- either across an
interface or when two or more fluids interpenetrate -- and can be triggered,
for example, when one-dimensional plane-waves appear to be left-moving with
respect to one fluid, but right-moving with respect to another. The dispersion
relation of the two-fluid system is studied for different two-fluid equations
of state: (i) the "free" (where there is no direct coupling between the fluid
densities), (ii) coupled, and (iii) entrained (where the fluid momenta are
linear combinations of the velocities) cases are considered in a
frame-independent fashion (eg. no restriction to the rest-frame of either
fluid). As a by-product of our analysis we determine the necessary conditions
for a two-fluid system to be causal and absolutely stable and establish a new
constraint on the entrainment.Comment: 15 pages, 2 eps-figure
The enigmatic spin evolution of PSR J0537-6910: r-modes, gravitational waves and the case for continued timing
We discuss the unique spin evolution of the young X-ray pulsar PSR
J0537-6910, a system in which the regular spin down is interrupted by glitches
every few months. Drawing on the complete timing data from the Rossi X-ray
Timing Explorer (RXTE, from 1999-2011), we argue that a trend in the
inter-glitch behaviour points to an effective braking index close to ,
much larger than expected. This value is interesting because it would accord
with the neutron star spinning down due to gravitational waves from an unstable
r-mode. We discuss to what extent this, admittedly speculative, scenario may be
consistent and if the associated gravitational-wave signal would be within
reach of ground based detectors. Our estimates suggest that one may, indeed, be
able to use future observations to test the idea. Further precision timing
would help enhance the achievable sensitivity and we advocate a joint observing
campaign between the Neutron Star Interior Composition ExploreR (NICER) and the
LIGO-Virgo network.Comment: 10 pages, 4 figures, emulate ApJ forma
Seismology of adolescent neutron stars: Accounting for thermal effects and crust elasticity
We study the oscillations of relativistic stars, incorporating key physics
associated with internal composition, thermal gradients and crust elasticity.
Our aim is to develop a formalism which is able to account for the
state-of-the-art understanding of the complex physics associated with these
systems. As a first step, we build models using a modern equation of state
including composition gradients and density discontinuities associated with
internal phase-transitions (like the crust-core transition and the point where
muons first appear in the core). In order to understand the nature of the
oscillation spectrum, we carry out cooling simulations to provide realistic
snapshots of the temperature distribution in the interior as the star evolves
through adolescence. The associated thermal pressure is incorporated in the
perturbation analysis, and we discuss the presence of -modes arising as a
result of thermal effects. We also consider interface modes due to
phase-transitions and the gradual formation of the star's crust and the
emergence of a set of shear modes.Comment: 27 pages, 14 figure
- …
