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Abstract. Wemodel a player’s uncertainty about other players’ strategy
choices as smooth probability distributions over their strategy sets. We call
a strategy profile (strictly) robust to strategic uncertainty if it is the limit,
as uncertainty vanishes, of some sequence (all sequences) of strategy profiles,
in each of which every player’s strategy is optimal under under his or her
uncertainty about the others. We derive general properties of such robustness,
and apply the definition to Bertrand competition games and the Nash demand
game, games that admit infinitely many Nash equilibria. We show that our
robustness criterion selects a unique Nash equilibrium in the Bertrand games,
and that this agrees with recent experimental findings. For the Nash demand
game, we show that the less uncertain party obtains the bigger share.
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1. Introduction
Many games admit multiple Nash equilibria. As is well known, even in games with
a unique Nash equilibrium, common knowledge of the game and of all players’ ra-
tionality does not, in general, suffice to provide them with clear guidance, see e.g.
Bernheim (1984), Pearce (1984) and Aumann and Brandenburger (1995). Players
cannot, in general, deduce the behavior of other players, and yet beliefs about oth-
ers’ strategy choices are pivotal to a player’s decision as to what strategy to choose.
Following Harsanyi and Selten (1988) and Brandenburger (1996), it has become cus-
tomary to allude to this type of uncertainty, concerning the behavior of other players
in the game, as ‘strategic uncertainty’, as opposed to uncertainty regarding the un-
derlying structure of the game played, which is often called ‘structural uncertainty’
(see e.g. Morris and Shin [2002]).
Strategic uncertainty matters because in a lot of games, many of the equilibria

represent fragile situations in which players are supposed to choose a particular strat-
egy, even though this would be optimal only if they held knife-edge beliefs about the
actions taken by other players.1 In such settings, even the slightest uncertainty about
other players’ choices might lead them to deviate from their equilibrium strategy. It
is then arguably reasonable to require strategy profiles to be robust to small amounts
of uncertainty about other players’ strategies. That human beings’ behavior in games
admitting multiple equilibria is fairly stable and predictable in the aggregate is the
finding of several experimental studies. See, e.g., Van Huyck, Battalio and Beil (1990,
1991), Abbink and Brandts (2008) or Heinmann, Nagel and Ockenfels (2009).
In this study, we formalize a notion of strategic uncertainty for games with one-

dimensional continuum action spaces and propose a criterion for robustness to such
uncertainty.2 Our approach is roughly as follows. A player’s uncertainty about others’
strategy choices is represented by a probability distribution over others’ strategy
sets, scaled with a parameter t ≥ 0. The probability distributions are assumed to be
atomless and have standard regularity properties. For each value of the uncertainty
parameter t, we define a t-equilibrium as a Nash equilibrium of the game in which
each player strives to maximize her expected payoff under her strategic uncertainty
so defined. For t = 0, this is nothing else than Nash equilibrium in the original game.
We call a strategy profile robust to strategic uncertainty if there exists a collection of
probability distributions in the admitted class, one for each player, such that some
accompanying sequence of t-equilibria converges to this profile, as the uncertainty
parameter t tends to zero. If convergence holds for all distributions in the admitted
class, we say that the strategy profile is strictly robust to strategic uncertainty.

1The equilibrium strategy remains a best response if either players are certain about the actions
of other players or they hold beliefs lying in a lower-dimensional subspace of probabilistic beliefs.

2We believe that our approach can be generalized to higher-dimensional strategy sets.



Robustness to strategic uncertainty 3

Our approach is not eductive or normative: we do not attempt at telling players
what beliefs they should hold about other players’ actions. Neither is our approach
epistemic in the sense of being derived from assumptions about rationality, knowledge
or beliefs in abstract type spaces.3 Our aim is more modest: we simply study what
play may arise when players are slightly strategically uncertain, whatever the reasons
for their uncertainty may be. Contrary to the literature on global games (Carlsson
and van Damme [1993], Morris and Shin [2003]), we do not derive players’ uncer-
tainty from primitive assumptions within a meta-game in which the game at hand is
embedded. When compared to this literature, our approach is given in reduced form:
we derive players’ actions from arbitrary subjective beliefs (in an admissible class)
without deriving those beliefs from a structural source of uncertainty.
We first study general properties of our robustness criterion. For games with

continuous payoff functions, we establish existence results and clarify the relation-
ship with some existing solution concepts. In particular, we show that robustness
is a refinement of Nash equilibrium and that it implies, for two-player games, weak
perfection in the sense of Simon and Stinchcombe (1995). The general picture is
more complex for games with discontinuous payoff functions. In particular, we show
by way of an example that there are games in which non-Nash equilibrium strategy
profiles are robust to strategic uncertainty.
Our robustness criterion is closely related to Selten’s (1975) “substitute perfec-

tion”. Selten defined a Nash equilibrium in a finite game to have this property if
there exists a sequence of completely mixed strategy profiles, converging to the equi-
librium in question, such that each player’s equilibrium strategy is a best reply to
all but finitely many strategy profiles in the sequence. Substitute perfect equilibria
exist in all finite games, and, as Selten (1975) shows, they coincide with (trembling-
hand) perfect equilibria. However, in generic non-linear games with continuum strat-
egy spaces, no Nash equilibrium is literally substitute perfect, the reason being that
small perturbations of players’ beliefs induce small changes in their best replies (while
the discreteness in finite games allows best replies to remain unchanged under such
perturbations).
Simon and Stinchcombe (1995) extended Selten’s perfection criterion to games

with compact strategy sets and continuous payoff functions. By contrast, we here
analyze games with discontinuous payoff functions. Binmore (1987) and Carlsson
(1991) study equilibrium selection in the Nash demand game (Nash, 1953). Both
authors assume that players “tremble.” By contrast, in our model players do not
“tremble”; they are only uncertain about other players’ action. Young (1993) takes
the evolutionary route to show that the (generalized) Nash bargaining solution is
the only stochastically stable outcome of a game where individuals randomly drawn

3See the discussion in Brandenburger (2007).
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from two populations are matched to play the Nash demand game.4 Carlsson and
Ganslandt (1998) investigate “noisy equilibrium selection” in symmetric coordination
games and derive results that agree with the experimental findings on minimal effort
games in Van Huyck et al. (1990). While Carlsson’s and Ganslandt’s (1998) study
is tailored to the minimal effort game, we here make general assumptions concerning
players’ beliefs, assumptions that permit an operational definition of robustness to
strategic uncertainty for a large class of games. Our approach is related to that
in Friedman and Mezzetti (2005), who introduce a notion of “robust equilibria” in
finite games, as the limit of sequences of “random belief equilibria.” In a random
belief equilibrium, all players’ beliefs are random variables, and a player’s best-reply
distribution, implied by her belief distribution, is required to be consistent, in terms of
statistical expectation, with others’ beliefs about that player’s action. By contrast,
we analyze continuum-action games and impose no such interpersonal consistency
requirement.
We provide two main applications. The first is to Bertrand competition.5 By

way of a simple duopoly example with constant and identical marginal costs, we first
show that our refinement admits the unique and weakly dominated Nash equilibrium.
By contrast, when marginal costs are strictly increasing, our robustness criterion
selects a unique strategy profile out of the continuum of Nash equilibria (see Dastidar
[1995] for an analysis of such games).6 Our prediction agrees with recent findings in
experimental studies of (discretized versions of) the model, see Abbink and Brandts
(2008) and Argenton and Müller (2009).7 Abbink and Brandts (2008) remark that
“[that] price level (...) is not predicted by any benchmark theory [they] are aware of”

4The literature on the non-cooperative foundations of the Nash bargaining solution and the
so-called Nash program is enormous, see e.g. Serrano (2005) for a recent survey.

5Following Vives (1999, p.117), we take Bertrand competition to mean that (a) sellers simulta-
neously choose their prices and (b) each firm has to serve all its clients at the price it has chosen.
As mentioned by Vives (1999), for certain utilities and auctions, provision is legally mandated, and
in other markets firms have a strong incentive to serve all their clients, especially in industries in
which customers have an on-going relationship with suppliers (subscription, repeat purchases, etc.)
or where the costs of restricting output in real time are high.

6There are a number of papers focused on price competition with convex costs. Dixon (1990)
studies such competition when firms are not obliged to serve all demand, but incur a cost when
turning costumers down. He shows that under such circumstances there may still exist a continuum
of pure-strategy Nash equilibria. Spulber (1995) assumes that firms are uncertain about rivals’
costs and shows that there exists a unique symmetric Nash equilibrium in pure strategies. As the
number of firms grows, equilibrium pricing strategies tend to average cost pricing. Chowdhury and
Sengupta (2004) show that, in Bertrand games with convex costs, there exists a unique coalition-
proof Nash equilibrium (in the sense of Bernheim, Peleg and Whinston 1987), which converges to
the competitive outcome under free entry. Our criterion selects another price, which, moreover, does
not depend on the number of firms.

7Abbink and Brandts (2008) ran experiments with fixed groups of two, three, and four identical
firms. They find that duopolists are often able to collude on the joint profit-maximizing price.
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(p. 3). The present refinement provides a theoretical foundation for their finding.
Heuristically, strategic uncertainty in these pricing games results in uncertainty-

perturbed profit functions that are continuous, since the likelihood of serving the
entire market is continuous in one’s own price. The deviation incentives are asym-
metric, though. For high Nash equilibrium prices, a strategically uncertain player
has an incentive to cut her price, since she has a lot to lose if others’ prices lie a bit
below her price and little to gain if they lie a bit above it. Conversely, for low Nash
equilibrium prices, each player has an incentive to raise her price, since she has a lot
to loose if others’ prices lie a bit above her price and little to gain if they lie a bit
below. The only price that is robust to strategic uncertainty is the price at which the
monopoly profit is zero. This is also the maximal Nash equilibrium price in the limit
as the number of competitors tend to infinity. At that price, and no other price, the
incentives to move up and down for a strategically uncertain player are of the same
order of magnitude.
Our second application is the classical Nash (1953) bargaining game, in which two

players simultaneously bid for their share of a given pie, and obtain their shares if and
only if their bids are compatible. We show that equal division is robust to strategic
uncertainty when the two parties are equally uncertain and, more generally, that pie
sharing is related to the ‘relative uncertainty’ affecting players, thus providing some
strategic foundation for the generalized Nash bargaining solution (Kalai [1977]).
The remainder of the paper is organized as follows. Section 2 provides definitions

and general results. Section 3 deals with Bertrand competition and Section 4 with
the Nash demand game. Section 5 concludes.

2. Robustness to strategic uncertainty
Let G = (N,S, π) be an n-player normal-form game with player set N = {1, ..., n},
in which the pure-strategy set of each player is Si = R, and thus S = Rn is the set of
pure-strategy profiles s = (s1, ..., sn), and π : S → Rn is the combined payoff-function,
with πi (s) being the payoff to player i when s is played.8

Let F be the class of log-concave probability distributions with finite mean. More
exactly, by log-concavity we mean cumulative probability distribution functions Φ :
R → [0, 1] with everywhere positive and differentiable density φ = Φ0, such that
lnφ is a concave function.9 A useful feature of those distributions is that they have

However, the lowest price in the range of Nash equilibria which involves no loss in case of mis-
coordination (24 in their specification), a much smaller number than the collusive price, is also an
attractor of play. With more than two firms in a market, it actually is the predominant market
price. This outcome is also observed in the complete information, symmetric treatment in Argenton
and Müller (2009).

8See below for how this machinery can be adapted to interval strategy sets.
9The log-concavity assumption is common in the economics literature and has applications in
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non-decreasing hazard rates in both directions; that is, the hazard rate

h(x) =
φ (x)

1− Φ (x)

is non-decreasing (see Corollary 2 in Bagnoli and Bergstrom, 2005) and the reversed
hazard rate,

h−(x) =
φ (x)

Φ (x)

non-increasing.10 Examples of log-concave distributions are the normal, exponential
and Gumbel distributions.

Definition 1. For any given t ≥ 0, a strategy profile s is a t-equilibrium of G if,
for each player i, the strategy si maximizes i’s expected payoff under the probabilistic
belief that all other players’ strategies are random variables of the form

s̃ij = sj + t · εij (1)

for some statistically independent “noise” terms εij ∼ Φij, where Φij ∈ F for all
j 6= i.

Remark 1. For t = 0, this definition coincides with that of Nash equilibrium.

Remark 2. For t > 0, the random variable s̃ij has the c.d.f. F t
ij ∈ F defined by

F t
ij (x) = Φij

µ
x− sj

t

¶
∀x ∈ R.

Note that we do not require that noise terms be symmetric or have expectation
zero. In particular, in a t-equilibrium players may believe that others have a system-
atic tendency to deviate upwards or downwards.

Example 1. Let Φij be a normal distribution, N (μ, σ), with μ = σ = 1, and hence
E [s̃ij] = sj + t. Then the density f tij is skewed to the right, as shown in the diagram
below for sj = 10, and t = 0.3 (thick), t = 0.1 (dashed) and t = 0.05 (thin).

mechanism design, game theory and labor economics, see Bagnoli and Bergstrom (2005).
10The latter follows from the fact that if φ is log-concave then so is Φ (see Theorem 1 in Bagnoli

and Bergstrom, 2005) and hence (φ(x)/Φ(x))0 = (lnΦ(x))00 ≤ 0.
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Let s̃−i denote the (n− 1)-vector of random variables (s̃ij)j 6=i. We note that a
t-equilibrium is a Nash equilibrium of a game with perturbed payoff functions:

Remark 3. Let t > 0 and Φij ∈ F for all i ∈ N and j 6= i. A strategy profile
s ∈ S is a t-equilibrium of G = (N,S, π), with εij ∼ Φij, if and only if it is a Nash
equilibrium of the perturbed game Gt = (N,S, πt), where

πti (s) = E [πi (si, s̃−i)]

=

Z
S1

..

Z
Si−1

Z
Si+1

..

Z
Sn

πi (si, s−i) dF
t
i1 (s1) ..dF

t
i,i−1 (si−1) dF

t
i,i+1 (si+1) ..dF

t
in (sn)

=
1

tn−1

Z
..

Z
..

Z "Y
j 6=i

φij

µ
xj − sj

t

¶
πi (si, x−i)

#
dx1..dxi−1dxi+1..dxn

We are now in a position to define robustness to strategic uncertainty.

Definition 2. A strategy profile s∗ in the game G is robust to strategic uncer-
tainty if there exists a collection of c.d.f:s {Φij ∈ F : ∀i ∈ N, j 6= i} and an accom-
panying sequence of t-equilibria, hstkik∈N with tk ↓ 0, such that stk → s∗ as k → +∞.
The strategy profile s∗ is strictly robust to strategic uncertainty if this holds for all
collections of c.d.f:s {Φij ∈ F : ∀i ∈ N, j 6= i}.

Remark 4. This definition can be adapted as follows to games in which the strategy
set of each player j is an interval Sj = [0, bj] for some bj > 0.11 For any Φij ∈ F , let

F t
ij (x) =

Φij

¡x−sj
t

¢
−Φij

¡
−sj

t

¢
Φij

³
bj−sj

t

´
−Φij

¡
−sj

t

¢
11Without loss of generality, we normalize the left end of each interval to aj = 0.
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This defines a c.d.f. for s̃ij with support [0, bj], such that, for any sj, x ∈ [0, bj]:

lim
t→0

F t
ij (x) =

½
0 if x < sj
1 if x ≥ sj

Taking expectations with respect to such c.d.f:s F t
ij, one obtains a perturbed game

with payoff functions

πti (s) = E [πi (si, s̃−i)]

=
1

tn−1

Z
...

Z
...

Z "Y
j 6=i

φtij

µ
xj − sj

t

¶
πi (si, x−i)

#
dx1...dxi−1dxi+1...dxn

where

φtij

µ
xj − sj

t

¶
=

φij
¡x−sj

t

¢
Φij

³
bj−sj

t

´
−Φij

¡
−sj

t

¢ . (2)

We note that for any interior strategy profile, s ∈ ×i∈N (0, bi), our robustness criterion
is the same, whether or not the noise terms are truncated to the strategy sets in this
way: for any sj ∈ (0, bj), the denominator in (2) converges to 1 and its derivative
converges to zero. If instead Si = R+ for all players i, then all properties are retained
by setting

F t
ij (x) =

Φij

¡x−sj
t

¢
−Φij

¡
−sj

t

¢
1− Φij

¡
−sj

t

¢ . (3)

2.1. Continuous games. We here establish that, for games with continuous pay-
off functions, which we call continuous games, robustness to strategic uncertainty
implies Nash equilibrium. We also show that the converse is not true, and derive
some results concerning the relationship to some other Nash equilibrium refinements
for such games.

Proposition 1. If the payoff functions inG are continuous and s∗ is robust to strate-
gic uncertainty, then s∗ is a Nash equilibrium.

Proof : Suppose that the claim is false. Let {Φij : ∀i ∈ N, j 6= i} ⊂ F and let
hstkik∈N be a sequence of tk-equilibria with tk ↓ 0, such that stk → s∗, where s∗ is not
a Nash equilibrium in G. Then, there exists a player i and pure strategy s0i ∈ Si such
that πi

¡
s0i , s

∗
−i
¢
− πi (s

∗) = δ for some δ > 0. Now, πti converges pointwise to πi as
t→ 0, by continuity of πi. Hence, πti

¡
s0i , s

∗
−i
¢
− πti (s

∗) > δ/2 for all t > 0 sufficiently
close to zero, say, for all t < τ (δ), where τ (δ) > 0. Moreover, since πti is continuous,
there exists a neighborhood B of s∗ such that

πti
¡
s0i , s

0
−i
¢
− πti (s

0) > δ/3
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for all s0 ∈ B and t ∈ (0, τ (δ)). In particular, B contains no t-equilibrium with
t < τ (δ). But this contradicts the hypothesis that all the elements of the sequence
sk
®∞
k=1
→ s∗ are tk-equilibria. End of proof.

The following example shows that there are continuous games that have non-
robust Nash equilibria.

Example 2. Let G be a two-player game on R2, where π2 (s1, s2) = − (s2)2, so that
2’s unique best reply is always s∗2 = 0. Let π1 (s1, s2) = − (s1)

2 (s2)
2. Then 1’s best

reply to each s2 6= 0 is s∗1 = 0. For s2 = 0, all s1 ∈ R are best replies. However,
s∗1 = 0 is the unique undominated best reply. This game has infinitely many Nash
equilibria, {(s1, s2) ∈ R2 : s2 = 0}, but only one of them, (0, 0) is robust to strategic
uncertainty (indeed, it is strictly robust). For example, (s1, s2) = (1, 0) is not robust,
since for any t > 0, the unique t-equilibrium is (0, 0).

Hence, for continuous games, our definition of robustness to strategic uncertainty
is a refinement of Nash equilibrium. We proceed to show that in continuous games
with (non-empty) compact strategy sets, strict robustness to strategic uncertainty
implies weak perfection in the sense of Simon and Stinchcombe (1995), while mere
robustness is sufficient in two-player games.
For each player i ∈ N , let Si = [0, bi] for bi > 0, and let ∆i denote the set of

Borel probability measures over Si. For any μ ∈ ¤ = ×i∈N∆i, let βi(μ) ∈ ∆i denote
i’s set of mixed best replies to the mixed-strategy profile μ. Following Simon and
Stinchcombe (1995), define the weak-metric distance between two mixed strategies,
μi and υi, as follows:

ρw(μi, υi) = inf{δ > 0 : μi (B) ≤ υi
¡
Bδ
¢
+ δ

and υi (B) ≤ μi
¡
Bδ
¢
+ δ, for all Borel sets B ⊂ Si},

where Bδ is the δ-neighborhood of B. Identify pure strategies with unit point masses.

Definition 3 [Simon and Stinchcombe, 1995]. For any ε > 0, a weak perfect ε-
equilibrium is a completely mixed-strategy profile, με ∈ int(¤), such that, for every
player i ∈ N , ρi(μ

ε
i , βi(μ

ε)) < ε. A strategy profile μ∗ ∈ ¤ is weakly perfect if it is
the limit as εk → 0 of a sequence of weak perfect εk-equilibria.

The reason why strict robustness implies weak perfection is, heuristically, that
such robustness requires (inter alia) robustness to interpersonally consistent subjec-
tive beliefs, that is, subjective probability distributions about others’ (pure) strategy
choices, shared by all players but the one in question. Being interpersonally con-
sistent, a shared subjective probability distribution, concerning a player’s strategy
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choice, can be viewed as a completely mixed strategy for that player. For t > 0
sufficiently small, and any t-equilibrium, these distributions will place almost all
probability mass in any given ε-neighborhood to that player’s t-equilibrium strategy.
In the two-player case, only one player has to hold a belief about a given player,
so that the issue of mutual consistency of beliefs does not arise. As a result, mere
robustness to strategic uncertainty implies weak perfection.12

Proposition 2. If the payoff functions in G are continuous and the strategy sets
compact, then every strategy profile that is strictly robust to strategic uncertainty is
also weakly perfect. In the two-player case, every strategy profile that is robust to
strategic uncertainty is also weakly perfect.

Proof: Suppose that s∗ is strictly robust to strategic uncertainty. LetΨ1, ...,Ψn ∈
F and, for each j ∈ N , let Φij = Ψj for all i 6= j. Clearly Φij ∈ F for all i ∈ N and
j 6= i. Since s∗ is strictly robust to strategic uncertainty, it is the limit as tk → 0 of a
sequence of tk-equilibria, stk . The claim is established if we can extract a subsequence
of weak perfect εh-equilibria with εh → 0. For each k ∈ N, let

F̃ k
i (x) = Ψi

µ
x− stki

tk

¶
∀i ∈ N, x ∈ Si.

For each h ∈ N, let εh = 1/h, and, for each player i, let k (i, h) be the minimal
k ∈ N such that F̃ k

i

¡
stki − 1/h, stki + 1/h

¢
> 1 − 1/h. Such a k clearly exists. Let

k (h) = maxi∈N k (i, h). Then stk(h) is a weak perfect εh-equilibrium. In the two-player
case: robustness implies that there exist Φ12,Φ21 ∈ F such that s∗ is the limit of a
sequence of t-equilibria. Let Ψ2 = Φ12 and Ψ1 = Φ21 above. End of proof.

It is not difficult to verify that strategy profiles that are robust to strategic un-
certainty exist in continuous games if each strategy set is compact and convex, and
each payoff function πi is concave in si (for every s−i):

Proposition 3. Suppose that the payoff functions in G are continuous, that the
strategy sets are compact and convex, and that each payoff function πi is concave in
si (for every s−i). Let Φij ⊂ F , ∀i ∈ N, j 6= i. For each t > 0, the perturbed game Gt

has at least one Nash equilibrium. Moreover, G admits at least one strategy profile
that is robust to strategic uncertainty.

12By contrast, our notion of strict robustness to strategic uncertainty appears to be weaker than
Simon’s and Stinchcombe’s (1995) notion of strong perfection. The reason is that they then work
with point masses (attached to the pure best reply), while our probability distributions are contin-
uous.
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Proof: Let G be as stated in the proposition. Let Φij ⊂ F , ∀i ∈ N, j 6= i.
Consider any sequence htki∞k=1 → 0, where each tk > 0. For each k ∈ N , suppose that
sk is a Nash equilibrium of Gtk . Then, sk is a tk-equilibrium of G. Now sk ∈ S for
all k ∈ N , where S is a non-empty and compact set, so


sk
®∞
k=1

admits a convergent
subsequence, with limit s∗ ∈ S, by the Bolzano-Weierstrass Theorem.
It remains to establish that for each t > 0, the perturbed game Gt has at least one

Nash equilibrium. For this purpose, it is sufficient to show that each payoff function
πti is continuous and concave in si (for every s−i). We prove this for the case of two
players, but the generalization is immediate. By definition,

πti (s) = E [πi (si, s̃j)] =
Z

πi (si, s̃j) dF
t
ij

Continuity of πti follows from the continuity of πi and F
t
ij. Moreover, by concavity of

π,

πti [λsi + (1− λ) s0i, sj] =

Z
[λπi (si, s̃j) + (1− λ)πi (s

0
i, s̃j)] dF

t
ij

= λ

Z
πi (si, s̃j) dF

t
ij + (1− λ)

Z
πi (s

0
i, s̃j) dF

t
ij

= λπti (si, sj) + (1− λ)πti (s
0
i, sj) .

for any λ ∈ (0, 1) and si, s
0
i, sj ∈ R, proving that πti is concave in si (for every s−i).

End of proof.

The following observation follows from Propositions 3 and 1:

Corollary 1. Suppose that the payoff functions in G are continuous, that the strat-
egy sets are compact and convex, and that each payoff function πi is concave in si
(for every s−i). If s∗ is the unique Nash equilibrium of G, then s∗ is strictly robust
to strategic uncertainty.

Proof: Let G be as stated. By Proposition 3, G admits a robust strategy profile.
By Proposition 1 this is also a Nash equilibrium. By hypothesis, G has a unique Nash
equilibrium, so this is robust to strategic uncertainty. Since the collection {Φij ⊂ F ,
∀i ∈ N, j 6= i} in the proof of Proposition 3 was arbitrary, it follows that s∗ is strictly
robust to strategic uncertainty. End of Proof.

We conclude by noting that robustness to strategic uncertainty does not imply
admissibility. In other words: it does not exclude all equilibria that involve the use
of weakly dominated strategies. Indeed, as noted by Simon and Stinchcombe (1995),
admissibility is not a property that one can generally expect from Nash equilibrium
refinements in continuum-action games. The following example is taken from Simon
and Stinchcombe (1995, Example 2.1).
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Example 3. Consider the symmetric two-player game with S1 = S2 = [0, 1/2] and
payoff functions

π1(s1, s2) =

½
s1 if s1 ≤ s2/2
s2(1− s1)/ (2− s2) otherwise

and π2(s1, s2) ≡ π1(s2, s1). The figure below illustrates the graph of π1(s1, s2) for
s2 = 0.2. This game has a unique Nash equilibrium, (0, 0), but for each player i,
the strategy si = 0 is weakly dominated by all other strategies. Nevertheless, this is
a game that meets the conditions in Corollary 1, and hence the weakly dominated
Nash equilibrium (0, 0) is strictly robust to strategic uncertainty.

0.0 0.1 0.2 0.3 0.4 0.5
0.00

0.05

0.10

0.15

0.20

s1

pi1

2.2. Discontinuous games. The general picture is less clear for games with dis-
continuous payoff functions. In particular, deriving general existence results proves
challenging and we will not attempt it here. Instead, we will subsequently illustrate
the workings of our robustness criteria in two well-known classes of discontinuous
games. However, before embarking on that analysis, we make two general observa-
tions. First, there exist discontinuous games with strategy profiles that are robust
to strategic uncertainty without being Nash equilibria. Second, there exist discontin-
uous games with strict Nash equilibria that are not robust to strategic uncertainty
(which we also show in the next section, in the context of price competition games).
We substantiate these claims by means of two examples.

Example 4. Consider the two-player game in which each player’s pure-strategy
space is R and the payoff functions are:

π1 (s1, s2) =

½
s1 if s1 < s2
0 otherwise
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and π2 (s1, s2) = − (s2 − 1)2. Hence, irrespective of 1’s action, 2’s best reply is s∗2 = 1,
and 1’s payoff function is discontinuous on the diagonal in R2. In any t-equilibrium,
st2 = 1, and thus

st1 ∈ argmax
s1

∙
1− Φ

µ
s1 − 1

t

¶¸
· s1 (4)

The associated necessary first-order condition is∙
1− Φ

µ
s1 − 1

t

¶¸
− s1

t
φ

µ
s1 − 1

t

¶
= 0 (5)

Let Φ be the standard normal distribution. As t → 0, st1 tends to 1 from below,
see diagram. Hence, the pure-strategy profile (1, 1) is robust to strategic uncertainty.
However, it is clearly not a Nash equilibrium of the unperturbed game.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
0.0

0.2

0.4

0.6

0.8

1.0

t

s1^t

The best reply correspondence of player 1 as a function of t.

Example 5. Consider the symmetric two-player game with S1 = S2 = [0, 1] and
with payoff functions

πi (s1, s2) =

½
2 if s1 = s2
1− si otherwise

¾
for i = 1, 2. The set of pure Nash equilibria is the diagonal, s1 = s2, and all those
equilibria are strict. By continuity of the probability distributions in F :

πti (s1, s2) = 1− si

for all t > 0. Hence, si = 0 is a dominant strategy in every perturbed game, so the
strategy profile (0, 0) is the unique t-equilibrium, for any t > 0. It follows that (0, 0)
is the unique strategy profile that is robust to strategic uncertainty (it is even strictly
robust).
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3. Price competition with convex costs
As we will show in this section, our definition of robustness selects a unique Nash
equilibrium out of a continuum of equilibria in a class of price-competition games with
convex costs. Before embarking on that analysis, we briefly consider the canonical
Bertrand model of pure price competition with linear costs.

Example 6. Consider two identical firms, each with constant unit cost c > 0, in a
simultaneous-move pricing game à la Bertrand in a market for a homogeneous good.
Let the demand function be linear, D (p) = a−p, for all p ∈ [0, a] with a > c.13 Then,
the monopoly profit function, Π (p) = (a−p)(p− c), is strictly concave with a unique
maximum at pm = (a+ c) /2 and Π (pm) > 0. By contrast, the unique duopoly Nash
equilibrium, p1 = p2 = c, results in zero profits. This Nash equilibrium is weakly
dominated. Nevertheless, it is robust to strategic uncertainty. For sufficiently small
degrees of strategic uncertainty, both firms will set their prices a little bit above
marginal cost, and less so, the less uncertain they are. To see this, suppose that
εij ∼ Φ ∈ F .14 For each t > 0 and all p1, p2 ∈ [0, a],

πti (pi, pj) =

"
1−

Φ
¡pi−pj

t

¢
−Φ

¡
−pj

t

¢
1− Φ

¡
−pj

t

¢ #
·Π (pi) i = 1, 2, j 6= i.

This can be rewritten as

πti (pi, pj) = [1−Φ (−pj/t)]−1 ·
∙
1−Φ

µ
pi − pj

t

¶¸
·Π (pi) i = 1, 2, j 6= i,

where the first factor is positive and independent of pi. A necessary first-order
condition for symmetric t-equilibrium15 is thus that

t · Π
0 (pi)

Π (pi)
=

φ (0)

[1−Φ (0)]
i = 1, 2, j 6= i. (6)

The right-hand side of (6) is a positive constant. Consequently, in the perturbed
game, it is never optimal to choose pi ≤ c or pi ≥ pm. Hence, without loss of gen-
erality, we restrict attention to pi ∈ (c, pm). On this interval, the left-hand side is
a continuous and strictly decreasing function that runs from plus infinity to zero.
Hence, there exists a unique symmetric t-equilibrium price, pt, for every t > 0. More-
over, as t → 0, the denominator of the left-hand side has to tend to zero for (6) to

13To keep the intuition clear, we take a simple functional form but the argument extends to general
demand curves.
14We focus on symmetric error distributions in this example only for expositional convenience.

The Nash equilibrium is robust to strategic uncertainty under asymmetric distributions as well.
15It is easily verified that there does not exist any asymmetric t-equilibrium.
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hold. Consequently, pt ↓ c. The diagram below shows how the t-equilibrium price pt
depends on t, when Φ is the standard normal distribution, a = 1 and c = 0.2.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.1

0.2

0.3

0.4

t

p^t

The t−equilibrium price as a function of t.

The above example shows that there are discontinuous games with weakly dom-
inated Nash equilibria that are robust to strategic uncertainty. We now turn to
Bertrand games with strictly convex costs.

3.1. Convex costs. There are n ≥ 2 firms i ∈ N = {1, 2, ..., n} in a market for
a homogeneous good. Aggregate demand D : R+ −→ R+ is twice differentiable and
such that D(0) = qmax ∈ R and D(pmax) = 0 for some pmax, qmax > 0.16 Moreover, we
assume that D0(p) < 0 for all p ∈ (0, pmax). All firms i simultaneously set their prices
pi ∈ R+. Let p = (p1, p2, ..., pn) be the resulting strategy profile (or price vector).
The minimal price, p0 := min {p1, p2, ..., pn}, will be called the (going) market price.
Letm be the number of firms that quote the going market price, m := | {i : pi = p0} |.
Each firm i faces the demand

Di(p) :=

½
D(p0)/m if pi = p0
0 otherwise

All firms have the same cost function, C : R+ −→ R+, which is twice differentiable
with C(0) = 0 and C 0, C 00 > 0. Each firm is required to serve all demand addressed
to it at its posted price. The profit to each firm i is thus

πi(p) =

½
p0D(p0)/m− C [D(p0)/m] if pi = p0
0 otherwise

(7)

This defines a simultaneous-move n-player game G in which each player i has
pure-strategy set R+ and payoff function πi : Rn

+ → R, defined in equation (7). A
16In this section, we follow closely Dastidar (1995).
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strategy profile p will be called symmetric if p1 = ... = pn, and we will call a price
p ∈ R+ a symmetric Nash equilibrium price if p = (p, p, ..., p) is a Nash equilibrium
of G. For each positive integer m ≤ n and non-negative price p, let

vm (p) = pD(p)/m− C [D(p)/m]

This defines a finite collection of twice differentiable functions, hvmim∈{1,2,..,n}, where
vm (p) is the profit to each of m firms if they all quote the same price p and all other
firms post higher prices (so that p is the going market price). In particular, v1 defines
the profit to a monopolist as a function of its price p.
We impose one more condition on C andD, namely, that the associated monopoly

profit function, v1, is strictly concave. More exactly, we assume that v001 < 0 and
v01 (p

mon) = 0 for some price pmon ∈ (0, pmax). Since the cost function is strictly con-
vex by assumption, this concavity assumption on v1 effectively requires the demand
function to be “not too convex”.17 We have v1(pmon) ≥ 0. By convexity of the cost
function, there exists prices p ∈ (0, pmax) at which all n firms, when quoting the same
price p, make positive profits, vn(p) > 0.
The game G has a continuum of symmetric Nash equilibria.18 For any number of

firms, n ≥ 2, let p̌n ∈ (0, pmax) be the price p at which vn(p) = 0 and let p̂n ∈ (0, pmax)
be the price p at which vn(p) = v1(p). Dastidar (1995, Lemmas 1, 5 and 6) shows
existence and uniqueness of p̌n and p̂n and that p̌n < p̂n. As also shown in Dastidar
(1995, Proposition 1), all prices in the interval PNE

n = [p̌n, p̂n] are symmetric Nash
equilibrium prices in the game G, and no price outside this interval is a symmetric
Nash equilibrium price.
As shown in Dastidar (1995, Lemmas 4 and 6), there exists a unique price p̄

at which a monopolist makes zero profit, v1 (p̄) = 0, and, moreover, p̄ ∈ (p̌n, p̂n).
Dastidar (1995, Lemma 7) also shows that both p̌n and p̂n are strictly decreasing
in n. In the present setting, it is easily verified that p̌n ↓ 0 and p̂n ↓ p̄, and hence
PNE
n → (0, p̄], as n→∞.

Example 7. Consider a duopoly with identical firms with quadratic cost functions,
C (q) = cq2, where c = 0.2, and linear aggregate demand: D (p) = max {0, 1− p}.
The diagram below shows the graphs of v1 (dashed curve) and v2 (solid curve). The
associated set, PNE

2 , is the interval [1/11, 3/13], indicated by the two solid vertical
lines, and p̄ = 1/6 is indicated by the dashed vertical line.

17This is a more stringent assumption than the one made in Dastidar (1995), who instead assumes
that there exists a unique monopoly price.
18Dastidar (1995) and Weibull (2006) have shown existence and multiplicity of Nash equilibria

under weaker conditions.
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Monopoly (dashed) and duopoly (solid) profits, as functions of a common price p.

We make two further observations. First, that p̂n cannot exceed the monopoly
price, and second, that the pricing game G admits no asymmetric Nash equilibrium.

Proposition 4. p̂n ≤ pmon for all n > 1.

Proof : Dastidar (1995; Lemma 3) shows that, if vn(p) ≥ v1(p) then v1(p) >
v1(p − α), ∀α > 0 for p − α ∈ [0, p). So, if p is a Nash equilibrium, then the left-
derivative of v1 at p must be positive. The concavity of v1 implies that p̂n ≤ pmon.
End of proof.

Proposition 5. Every Nash equilibrium in G is symmetric.

Proof : Let (p1, ..., pn) be a Nash equilibrium. Suppose, first, that pi < minj 6=i pj
for some i. If pi < p̂n, then firm i could increase its profit by unilaterally increasing
its price. Hence, pi ≥ p̂n. If pi ≤ pmon, then any firm j 6= i could increase its
profit by unilaterally decreasing its price to pi and earn v2(pi) > 0 instead of zero. If
pi > pmon then firm i can increase its profit by a unilateral deviation to pmon. Hence,
pi ≥ minj 6=i pj for all i. Suppose, secondly, that pi = minj 6=i pj and that pk > pi for
some k. Either v|j∈N :pj=pi|(pi) > 0 or v|j∈N :pj=pi|(pi) = 0. (If v|j∈N :pj=pi|(pi) < 0, then
i can profitably deviate to pmax and earn zero profit.) In any case, k can profitably
deviate to pi and make a positive profit since by strict convexity of C, if vl(p) ≥ 0,
then vl+1(p) > 0. Hence, pi = pj for all i, j ∈ N . End of proof.

3.2. Robust price equilibrium. We proceed to apply the robustness definition
from Section 2 to the pricing game described in Section 3.1. Let t > 0 and suppose
that a firm i holds a probabilistic belief of form (1) about other firms’ prices. For
any price pi that firm i might contemplate to set, its subjective probability that any
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other firm will choose exactly the same price is zero. Hence, with probability one, its
own price will either lie above the going market price or it will be the going market
price and all other firms’ prices will be higher, so i will then be a monopolist at
its price pi. From equation (3), each firm i’s payoff function in the perturbed game
Gt = (N,S, πt) is, for any t > 0, defined by

πti (p) = v1 (pi) ·
ÃY

j 6=i

∙
1−Φij

µ
−pj
t

¶¸−1!
·
ÃY

j 6=i

∙
1−Φij

µ
pi − pj

t

¶¸!
(8)

The second factor being positive and independent of pi, a price profile p is a Nash
equilibrium of Gt if and only if

pi ∈ arg max
p∈[p̄,pmon]

uti (p,p−i) ∀i, (9)

where

uti (p) = v1 (pi) ·
Y
j 6=i

∙
1−Φij

µ
pi − pj

t

¶¸
and the restriction p ∈ [p̄, pmon] is non-binding, since v1 (p) < 0 for all p < p̄, v1 (p) > 0
for all p ∈ (p̄, pmon), and v01 (p) < 0 for all p > pmon. For any t > 0, let Ḡt be the
normal-form game (N, [p̄, pmon]n , ut). For any t > 0, a price profile p is a t-equilibrium
in the pricing game G if and only if it is a Nash equilibrium of the game Ḡt.

Proposition 6. Let t > 0 and assume that Φij ∈ F ∀i ∈ N, j 6= i. Then Ḡt has at
least one Nash equilibrium. Moreover, any such Nash equilibrium pt is interior.

Proof: We note that for given t > 0, each player’s strategy set is non-empty,
convex and compact and each player’s payoff function is continuous. By Weier-
strass’s maximum theorem, each player’s best reply correspondence is non-empty
and compact-valued. By Berge’s maximum-theorem, it is also upper hemi-continuous.
Existence of a Nash equilibrium in Ḡt thus follows from Kakutani’s fixed-point the-
orem if, in addition, each player’s best-reply correspondence is convex-valued. In
order to verify this, first note that no equilibrium price can lie on the boundary of
the strategy set in Ḡt, since ∂uti/∂pi is positive at its left boundary and negative at
its right boundary. Hence, any Nash equilibrium of Ḡt is in (p̄, pmon)n. It remains to
show that the set arg maxpi∈(p̄,pmon) u

t
i (p) is convex. For this purpose, note that

pti ∈ arg max
pi∈(p̄,pmon)

uti (pi, p−i)

if and only if

pti ∈ arg max
pi∈(p̄,pmon)

Ã
ln [v1 (pi)] +

X
i6=j
ln

∙
1−Φij

µ
pi − pj

t

¶¸!
.



Robustness to strategic uncertainty 19

Since v1 is strictly concave by assumption, also ln [v1 (·)] is strictly concave. By as-
sumption, φij is continuously differentiable and concave on an open interval, which,
by Theorem 3 in Bagnoli and Bergstrom (2005), implies that also the survival func-
tion, 1−Φij, is log concave. Hence, each term in the above sum is a concave function
of pi (given pj and t). Concavity is preserved under summations, so the maximand
is concave, and thus i’s best-reply correspondence is convex-valued. End of proof.

Theorem 1. The Nash equilibrium (p̄, ..., p̄) is strictly robust to strategic uncer-
tainty. No other strategy profile of G is robust to strategic uncertainty.

Proof: Let {Φij : ∀i ∈ N, j 6= i} ⊂ F . Consider any sequence htki∞k=1 → 0, where
each tk > 0. For each k ∈ N , let pk be a Nash equilibrium of Ḡtk . Since all games
Ḡtk have the same strategy space, [p̄, pmon]n, and this is non-empty and compact, the
sequence hptki∞k=1 contains a convergent subsequence with limit in [p̄, pmon]n, accord-
ing to the Bolzano-Weierstrass Theorem. Hence, without loss of generality we may
assume that limk→∞ pk = p∗ ∈ [p̄, pmon]n.
First, we prove that p∗i = p∗j for all i, j ∈ N . For this purpose, first note that no

price can lie on the boundary of the strategy set in Ḡt, since ∂uti/∂pi is positive at
its left boundary and negative at its right boundary.

∂uti (p)

∂pki
=
Y
j 6=i

"
1− Φij

Ã
pki − pkj

t

!#
·
"
v01
¡
pki
¢
−

v1
¡
pki
¢

t

X
j 6=i

hij

Ã
pki − pkj

t

!#

Hence, p̄ < pki < pmon for all i and k, and thus p̄ ≤ p∗i ≤ pmon for all i. The first-order
condition gives,

tkv
0
1

¡
pki
¢
= v1

¡
pki
¢X

j 6=i
hij

Ã
pki − pkj

tk

!
∀i, k (10)

where hij is the hazard-rate function of Φij. Consider a firm i ∈ N . Suppose that
p∗j < p∗i for some j 6= i, and let ε = p∗i − p∗j > 0. Then, there is a K such that
pki − pkj > ε/2 for all k > K. The hazard rate being non-decreasing, we thus have

hij

Ã
pki − pkj

tk

!
≥ hij

µ
ε

2tk

¶
for that j 6= i and all k > K. Let δ = hij [ε/ (2tK)] > 0. Then

hij

Ã
pki − pkj

tk

!
≥ δ
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for that j 6= i and all k > K, and hence, since all hazard rates are positive:

tkv
0
1

¡
pki
¢
> δ · v1

¡
pki
¢

for all k > K. However, tkv01
¡
pki
¢
→ 0 and v1

¡
pki
¢
→ v1 (p

∗
i ) as k → ∞, since v1

is continuous, so v1 (p
∗
i ) = 0. Hence, p∗i = p̄. But this contradicts the hypothesis

p∗i > p∗j ∈ [p̄, pmon]. Hence, p∗j ≥ p∗i . Since holds for all i and j 6= i, we conclude that
p∗j = p∗i for all i, j ∈ N .
Secondly, we prove p∗i = p̄ for all i ∈ N . Since v1

¡
pki
¢
> 0 on (p̄, pmon) and all

hazard rates are positive, by (10),

v1
¡
pki
¢
· hij

Ã
pki − pkj

tk

!
→ 0 ∀i, j 6= i

as k → +∞. Suppose that p∗i > p̄. Then v1 (p
∗
i ) > 0 and thus

hij

Ã
pki − pkj

tk

!
→ 0 ∀j 6= i

implying that pki < pkj for all k sufficiently large. But, by the same token: since
p∗j = p∗i , for all j 6= i, we also have p∗j > p̄ and v1

¡
p∗j
¢
> 0 and thus

hji

Ã
pkj − pki

tk

!
→ 0

implying that pkj < pki for all k sufficiently large. Both strict inequalities cannot
hold. Hence, p∗i = p̄ for all i ∈ N . In sum: the only strategy profile that is robust
to strategic uncertainty is (p̄, ..., p̄). The strict robustness claim follows immediately
from the fact that the collection {Φij : ∀i ∈ N, j 6= i} ⊂ F above was arbitrary. End
of proof.

Example 8. Consider again a duopoly with identical firms, with quadratic cost
function, C (q) = 0.2q2, and linear aggregate demand: D (p) = max{0, 1 − p}.
Suppose that both firms’ uncertainty takes the form of normally distributed noise,
ε1, ε2 ∼ N (0, 1). We then have p̄ = 1/6 ≈ 0.167. The necessary first-order condition
for interior t-equilibrium consists of the equations

tv01 (p1) = v1 (p1)h

µ
p1 − p2

t

¶
and

tv01 (p2) = v1 (p2)h

µ
p2 − p1

t

¶
.
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The diagram below shows these best-reply curves (solid and dashed, respectively)
and t = 0.1, with p̄ marked by thin straight lines.
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The best-reply curves in the perturbed pricing game.

The next diagram displays the best-reply curves of both players for t = 0.25 (solid
curves), t = 0.1 (thin curves), and t = 0.05 (dashed curves). As t decreases, the
intersection of the associated pair of curves approaches (p̄, p̄) = (1/6, 1/6), the inter-
section between the thin horizontal and vertical lines.
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4. The Nash demand game
The Nash demand game (Nash, 1953) is a two-player game G = (N,S, π), with
strategy sets S1 = S2 = [0, 1]. The players simultaneously submit “bids”. The payoff
to a player who bids s1, while the other player bids s2, is

πi (s1, s2) =

½
si if s1 + s2 ≤ 1
0 otherwise

.

As is well-known, this game admits a multiplicity of Nash equilibria: for each λ ∈
[0, 1], (λ, 1− λ) is a strict Nash equilibrium. Besides, s1 = s2 = 1 is a Nash equilib-
rium, though not strict.
Our robustness criterion has little general cutting power in this game. However,

sharp results can be obtained in special cases. In particular, equal division is robust to
strategic uncertainty when the two parties are equally uncertain, while in situations
of asymmetric uncertainty, the party that is less uncertain obtains more than half the
pie, in some cases even the full pie.
From equation (3), each player i’s payoff function in the perturbed game, Gt =

(N,S, πt), is, for any t > 0, defined by

πti(si, sj) =

∙
Φij

µ
1− sj

t

¶
−Φij

µ
−sj
t

¶¸−1
·
∙
Φij

µ
1− si − sj

t

¶
−Φij

µ
−sj
t

¶¸
· si

for i = 1, 2 and j 6= i. Since by hypothesis Φij is strictly increasing, the first factor is
always positive. Necessary first-order conditions for an interior t-equilibrium (st1, s

t
2) ∈

(0, 1)2 are thus

Φ12

µ
1− st1 − st2

t

¶
−Φ12

µ
−s

t
2

t

¶
=
1

t
φ12

µ
1− st1 − st2

t

¶
st1 (11)

and

Φ21

µ
1− st1 − st2

t

¶
−Φ21

µ
−s

t
1

t

¶
=
1

t
φ21

µ
1− st1 − st2

t

¶
st2. (12)

Proposition 7. Let Φ12,Φ21 ⊂ F and t > 0. There exists a t-equilibrium, and every
t-equilibrium is interior. A strategy pair (st1, s

t
2) ∈ (0, 1)

2 is a t-equilibrium if and
only if conditions (11) and (12) are met.

Proof : A strategy profile (st1, st2) ∈ [0, 1]
2 is a Nash equilibrium of Gt if and only

if
sti ∈ arg max

si∈[0,1]
πti(si, s

t
j) (13)
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for i = 1, 2 and j 6= i. In order to establish existence of t-equilibrium, we note
that, given t > 0, each player’s strategy set is non-empty, convex and compact, and
each player’s payoff function is continuous. By Weierstrass’s maximum theorem,
each player’s best reply correspondence is thus nonempty- and compact-valued. By
Berge’s maximum-theorem, it is also upper hemi-continuous. Hence, existence of t-
equilibrium follows from Kakutani’s fixed-point theorem if, moreover, each player’s
best-reply correspondence is convex-valued. In order to establish this, let t > 0 and
stj ∈ [0, 1]. First note that

∂

∂si
πti(si, s

t
j) = Φij

µ
1− si − stj

t

¶
−Φij

µ
−
stj
t

¶
− 1

t
φij

µ
1− si − stj

t

¶
· si

In particular
∂

∂si
πti(0, s

t
j) = Φij

µ
1− stj

t

¶
−Φij

µ
−
stj
t

¶
> 0,

since Φij is strictly increasing by assumption, and

∂

∂si
πti(1, s

t
j) = −

1

t
φij

µ−stj
t

¶
< 0,

since φij > 0 by assumption. From these observations it follows that

∅ 6= arg max
si∈[0,1]

πti(si, s
t
j) ⊂ (0, 1) .

Thus, any t-equilibrium is interior. It remains to show that the set argmaxsi∈(0,1) π
t
i(si, s

t
j)

is convex. For this purpose, note that

sti ∈ arg max
si∈(0,1)

πti(si, s
t
j)

if and only if sti = 1 − stj − txt, where (after a change of variables and taking the
logarithm):

xt ∈ arg max
x∈(−stj/t,(1−stj)/t)

£
lnΨi (x) + ln

¡
1− stj − tx

¢¤
(14)

for

Ψi (x) =

∙
Φij

µ
1− stj

t

¶
−Φij

µ−stj
t

¶¸−1
·
∙
Φij (x)−Φij

µ−stj
t

¶¸
By assumption, lnφij is concave, which, by Theorem 9 in Bagnoli and Bergstrom
(2005), implies that lnΨi is concave, since Ψi is the truncation of the c.d.f. Φij to
the (open) interval

¡
−stj/t,

¡
1− stj

¢
/t
¢
. But this implies that the maximand (being

the sum of one concave and one strictly concave function) in (14) is strictly concave.
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Thus i’s best-reply correspondence is singleton-valued. This establishes the first claim
in the proposition. Since each player’s payoff function is concave in his or her own
strategy, the necessary first-order conditions (11) and (12) are also sufficient, thus
establishing the second claim. End of proof.

Proposition 8. If
¡
stk1 , s

tk
2

¢®
k∈N is a sequence of t-equilibria where tk ↓ 0 as k →

+∞, then
(i) lim

k→+∞

1

tk

¡
1− stk1 − stk2

¢
= +∞

(ii) lim
k→+∞

¡
stk1 + stk2

¢
= 1

(iii) lim
k→+∞

stk1
stk2

= lim
w→+∞

h−21(w)

h−12 (w)

Proof: Let t > 0 and suppose that (st1, s
t
2) solves (11) and (12). Let wt =

(1− st1 − st2) /t. The two equations imply that

wt =
1

t
− Φ12 (w

t)−Φ12(−st2/t)
φ12 (w

t)
− Φ21 (w

t)−Φ21(−st1/t)
φ21 (w

t)
(15)

First note that since st1, s
t
2 ∈ (0, 1), bothΦ12(−st2/t) andΦ21(−st1/t) are monotonically

decreasing in t with limits limt→0Φ12(−st2/t) = 0 and limt→0Φ21(−st1/t) = 0. Claim
(i) is equivalent with the claim that for all subsequences hwtkik∈N with tk → 0,
wtk → +∞. Suppose not. Then there is a subsequence that converges to some real
number w∗, or to minus infinity. In the first case,

w∗ = lim
k→∞

1/tk − lim
k→∞

Φ12
¡
wtk
¢
/φ12

¡
wtk
¢
− lim

k→∞
Φ21

¡
wtk
¢
/φ21

¡
wtk
¢

(16)

= lim
k→∞

1/tk − lim
k→∞

1/h−12
¡
wtk
¢
− lim

k→∞
1/h−21

¡
wtk
¢

(17)

However, this is impossible, since the right-hand side tends to plus infinity.19 Suppose,
thus, that there is a subsequence that tends to minus infinity. By assumption, h−12 (w

tk)
and h−21 (w

tk) will then tend to some nonnegative limit or to plus infinity. Again, this
is impossible, since the right-hand side of (15) will then tend to plus infinity while
the left-hand side tends to minus infinity. This establishes claim (i).
In order to establish claim (ii), first note that by (i), for all t > 0 sufficiently

small, we must have zt > 0, where zt = 1− st1 − st2. We may thus presume, without
loss of generality, that zt ∈ (0, 1) for all t. It remains to show that zt → 0 as
t → 0. Suppose not. Since (0, 1) is non-empty and bounded, there then exists, by

19By continuity, 1/h−12 (w
tk)→ 1/h−12 (w

∗) and 1/h−21 (w
tk)→ 1/h−21 (w

∗).
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the Bolzano-Weierstrass Theorem, a subsequence hztkik∈N with tk → 0 such that
ztk → z∗ ∈ (0, 1]. However, for each t > 0 we also have

zt = 1− t · Φ12 (z
t/t)−Φ12(−st2/t)
φ12 (z

t/t)
− t · Φ21 (z

t/t)− Φ21(−st1/t)
φ21 (z

t/t)

so we necessarily then have

z∗ = 1− lim
k→∞

tk/φ12 (z
∗/tk)− lim

k→∞
tk/φ21 (z

∗/tk)

If the right-hand side is to be a number in (0, 1], which is necessary, we cannot have

lim
k→∞

1

tk
φ12 (z

∗/tk)→ 0

But the latter is necessary for the c.d.f. Φ12 to have finite expectation, which we have
assumed. This establishes claim (ii).
To establish claim (iii), note that division of the two first-order conditions gives

st1
st2
=

φ21 (w
t) · [Φ12 (wt)− Φ12(−st2/t)]

φ12 (w
t) · [Φ21 (wt)− Φ21(−st1/t)]

Since st1, s
t
2 ∈ (0, 1)

lim
t→0

φ21 (w
t) · [Φ12 (wt)−Φ12(−st2/t)]

φ12 (w
t) · [Φ21 (wt)−Φ21(−st1/t)]

= lim
t→0

φ21 (w
t)Φ12 (w

t)

φ12 (w
t)Φ21 (wt)

.

= lim
t→0

h−21 (w
t)

h−12 (w
t)

By claim (i), wt → +∞, from which claim (iii) follows immediately. End of proof.

From this last proposition we obtain three corollaries. The first makes the point
that if the two parties are equally uncertain about each other’s bid, then robustness
to strategic uncertainty implies equal division:

Corollary 2. The unique strategy profile that is robust to symmetric uncertainty
(Φ12 = Φ21) is s1 = s2 = 1/2.

Proof: If Φ12 = Φ21 and (st1, s
t
2) ∈ (0, 1)

2 is a t-equilibrium for each t > 0, then
st1+s

t
2 → 1 and st1/s

t
2 → 1/2, by claims (ii) and (iii) in Proposition 8. Hence sti → 1/2

for i = 1, 2. End of proof.

The following example illustrates this result.
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Example 9. Let Φ12 = Φ21 = Φ be the normal distribution with mean zero and unit
variance. The first diagram shows the two best-reply curves for t = 0.1.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

s1

s2

A close-up, also inserting the curves for t = 0.05 (dashed):

0.3 0.4 0.5 0.6 0.7
0.3

0.4

0.5

0.6

0.7

s1

s2

By hypothesis, both inverse hazard rates, h−ij (w) = φij (w) /Φij (w) are non-
increasing in w, for i = 1, 2 and j 6= i. Arguably, if player i is much more uncertain
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about j’s bid (than player j is about i), then h−ji (w) /h
−
ij (w)→ 0 as w→ +∞. It fol-

lows immediately from Proposition 8 that if one player is much more uncertain than
the other, then robustness to strategic uncertainty requires that the latter obtains
the whole pie:

Corollary 3. Let Φij ∈ F , ∀i ∈ N, j 6= i and suppose that h−21 (w) /h
−
12 (w) → 0 as

w → +∞. If
¡
stk1 , s

tk
2

¢®
k∈N ∈ (0, 1)

2 is a sequence of tk-equilibria, with all tk > 0

and tk → 0, then stk1 /s
tk
2 → 0.

To see that distributions do not have to be too different, consider the following
variation of the above example:

Example 10. Consider the setup from the previous example with the exception that
player 1’s belief has higher variance (σ = 3), that is, player 1 is more uncertain about
2 than 2 is uncertain about 1. The following diagram shows that, for t = 0.1, player
1 obtains less than half:

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0y

From part (iii) of Proposition 7 we have that limt→0 s
t
1/s

t
2 = limw→+∞ h−21 (w) /h

−
12 (w)

The next diagram shows the ratio r(w) = h−21 (w) /h
−
12 (w) as a function of w. In the

limit, the player with the less noisy belief, in this example player 2, obtains the whole
pie.
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1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.0

0.2

0.4

0.6

0.8

1.0

w

r(w)

Our third and final corollary establishes that (a) every division of the pie is robust
to some strategic uncertainty, (b) none of these divisions is strictly robust, and (c)
no other strategy pairs are robust to strategic uncertainty:

Corollary 4. A strategy profile (s1, s2) is robust to strategic uncertainty if and only
if s1 + s2 = 1. No strategy profile is strictly robust to strategic uncertainty.

Proof: For the first claim, the proof is constructive, and uses claim (iii) in Propo-
sition 8. Consider first (s1, s2) = (1, 0). Let Φ12 be the Gumbel distribution with
mean 0 and variance 1, and let Φ21 be the Gumbel distribution with mean 0 and
variance 2. Then

h−21(w)

h−12 (w)
=

e−w

1
2
e−w/2

= 2e−w/2,

so limw→+∞ h−21(w)/h
−
12 (w) = 0. Hence, any sequence of t-equilibria (with respect

to Φ12 and Φ21) converges towards (1, 0) as t → 0, so (1, 0) is robust to strategic
uncertainty. By reversing the variances, (0, 1) is robust to strategic uncertainty.
Consider now any (s1, s2) such that 0 < s1 ≤ 1/2 and s2 = 1 − s1. Let μ =

ln (s2/s1). Let Φ21 be the Gumbel distribution with mean 0 and variance 1 and let
Φ12 be the Gumbel distribution with mean μ and variance 1. Then

h−21(w)

h−12 (w)
=

e−(w−μ)

e−w
= eμ = s2/s1.

Any sequence of t-equilibria (with respect to Φ12 and Φ21) converges to the strategy
profile (s1, s2), so (s1, s2) is robust to strategic uncertainty. A similar argument applies
to any (s1, s2) such that 0 < s2 ≤ 1/2 and s1 = 1 − s2. Finally, consider (s1, s2)
such that s1 + s2 6= 1. By claim (ii) in Proposition 8, no sequence of t-equilibra
converges to (s1, s2). So no such strategy pair is robust to strategic uncertainty. This
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establishes the first claim in the corollary. The second claim follows immediately
from the above constructive proof, since for any strategy profile (s1, s2) ∈ [0, 1]2 we
identified Φ12,Φ21 ∈ F for which any sequence of t-equilibria converges to another
strategy profile. End of proof.

5. Conclusion
In this paper, we propose a way to model strategic uncertainty in a straightforward
fashion. After defining a robustness criterion and deriving a handful of general results,
including its relations to Nash equilibrium in continuous and discontinuous games,
we have investigated in detail two well-known games with discontinuous payoffs and
continuum action spaces, each game admitting infinitely many Nash equilibria. Ar-
guably, strategic uncertainty is considerable in those games, due to the richness of
the strategy spaces and the large number of equilibria. In the Bertrand competi-
tion game with convex costs, we showed that our notion of robustness to strategic
uncertainty selects a unique Nash equilibrium, that, moreover, figured prominently
in recent laboratory experiments. In the Nash demand game, we showed that ro-
bustness to symmetric strategic uncertainty singles out the Nash bargaining solution.
Contrary to Carlsson (1991), where players “tremble” when making their bids, our
predictions are not distribution independent. We find that the party who is least
uncertain about the other party’s bid obtains the bigger share.
We believe that our concept of robustness to strategic uncertainty has a wide

domain of application and that it comes at a relatively low analytical cost when used
for predictions in simultaneous-move games.
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