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Abstract

This paper analyzes the problem of selling a number of indivisible items to a set of unit-
demand bidders. An ascending auction mechanism called the Excess Demand Ascending
Auction (EDAA) is defined. The main results demonstrate that EDAA terminates in a
finite number of iterations and that the exact auction mechanism in Demange, Gale and
Sotomayor (J. Polit. Economy 94: 863–872, 1986) and its modification based on the Ford-
Fulkerson method, proposed by Sankaran (Math. Soc. Sci. 28: 143–150, 1994), reduce to
special cases of EDAA.
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1 Introduction

Economies with indivisible items and money have received considerable attention in the lit-
erature since the pioneering work of Shapley and Shubik (1972). Shapley and Shubik (1972)
did not only prove the existence of a Walrasian equilibrium but also that the set of Wal-
rasian price vectors forms a complete lattice. Consequently, there exist unique minimum and
maximum Walrasian equilibrium price vectors. The existence result has later been refined
and generalized by e.g. Demange and Gale (1985), Svensson (1983) and Alkan et al. (1991).
Furthermore, the lattice property has been demonstrated to play a key role when design-
ing strategy-proof mechanisms. For example, Andersson and Svensson (2008), Demange and
Gale (1985) and Leonard (1983) demonstrate that by regarding the minimum Walrasian price
equilibrium as a direct mechanism for allocating the indivisible items no agent can gain by
strategic misrepresentation.

An obvious field of application for Walrasian pricing mechanisms is auction design. As
emphasized by e.g. Ausubel (2004) and Perry and Reny (2005), dynamic auction mechanisms
are overwhelmingly more prevalent than their direct counterparts (i.e. sealed bid auctions)

∗The first two authors would like to thank The Jan Wallander and Tom Hedelius Foundation for financial
support.

†T. Andersson, Department of Economics, Lund University, P.O. Box 7082, 220 07 Lund, Sweden.
‡C. Andersson, Department of Economics, Lund University, P.O. Box 7082, 220 07 Lund, Sweden.
§A.J.J. Talman, CentER, Department of Econometrics and Operations Research, Tilburg University, P.O.

Box 90153, 5000 LE Tilburg, The Netherlands.

1



because bidders often fear complete revelation of information. Consequently, a variety of
different dynamic auction mechanisms has been designed to handle a number of different
prerequisites. For example, Demange et al. (1986) defined an ascending multi-item auction
mechanism (DGS) under the assumptions that bidders wish to acquire at most one item
(unit-demand bidders) and in the absence of income effects (quasi-linear preferences). Their
dynamic price adjustment mechanism always terminates at the minimum Walrasian equi-
librium prices and it therefore implements the direct mechanism by Leonard (1983). Thus,
truthful preference revelation constitutes a Nash equilibrium. In an environment with multi-
demand bidders, Gul and Stacchetti (2000) specified a dynamic ascending price adjustment
mechanism in the absence of income effects and under the gross substitute assumption of
Kelso and Crawford (1982). Their dynamic mechanism also converges to the minimum Wal-
rasian equilibrium prices but the results concerning non-manipulability are somewhat more
negative. More explicitly, truthful preference revelation is a perfect Bayesian equilibrium only
for a certain sub domain of the (gross substitute) preference domain. The analysis in Gul and
Stacchetti (2000) was later simplified by Ausubel (2006) who also developed a dynamic and
strategy-proof auction mechanism for multi-demand bidders. Also this mechanism converges
to the minimum Walrasian equilibrium prices.

A common ingredient in dynamic auction mechanisms that terminates at the minimum
Walrasian equilibrium prices in a unit-demand environment is that prices are updated based
on information regarding groups of items that are overdemanded. In this context, a set of
items is overdemanded, at a given price vector, if the number of bidders demanding only items
in the set is greater than the number of items in the set. This is a natural approach since it
is known from a famous theorem by Hall (1935) that a necessary requirement for reaching a
Walrasian equilibrium is that all overdemanded sets of items are eliminated. However, it is
also well-known that it is in general impossible to reach the minimum Walrasian equilibrium
prices by only using information regarding overdemanded sets of items. To see this, suppose
that there are three bidders (1, 2 and 3) and two items (A and B). Assume, in addition,
that bidders 1 and 2 only demand item A and that bidder 3 only demands item B at the
current prices. Clearly, the sets {A} and {A, B} are overdemanded. If, for example, bidder
1 is indifferent between receiving an item or not if the price of item A is raised by one
unit, and the other bidders can tolerate higher price increases, then the minimum Walrasian
equilibrium prices can never be reached if the prices of the items in {A, B} are raised. In
fact, to reach the desired equilibria, it suffices to increase the price of item A by one unit.
This demonstrates that if prices are raised in an arbitrary overdemanded set of items, the
minimum Walrasian equilibrium prices need not be reached in the process. In for example
Demange et al. (1986) and Sun and Yang (2009), this problem is solved by restricting the
attention to the family of minimal overdemanded sets, i.e., all overdemanded sets with the
property that none of its proper subsets is overdemanded (as e.g. the set {A} from the above
example). In a modification to the auction mechanism in Demange et al. (1986) proposed by
Sankaran (1994), a unique overdemanded, but not necessarily minimal overdemanded, set was
identified based on the Ford-Fulkerson method and it was demonstrated that the minimum
Walrasian equilibrium price vector will be reached in the process.

This paper considers a dynamic auction mechanism called the Excess Demand Ascending
Auction (EDAA, henceforth) designed for economies with unit-demand bidders. As explained
above, the price increments cannot be solely based on the overdemand criterion and additional
information is needed. EDAA considers a subset of the family of overdemanded sets of items
consisting of all ”sets in excess demand”. Formally, an overdemanded set of items S is in
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excess demand if the number of items in each subset T of S is strictly smaller than the
number of bidders that demand some item in T and in addition only demand items in S.
One of the main reasons for the attractiveness of the sets in excess demand is a result from
Mishra and Talman (2010, Theorem 2) which states that a price vector equals the minimum
Walrasian equilibrium price vector if and only if there are no overdemanded sets of items
and no weakly underdemanded sets of items at these prices. Here, weakly underdemand
refers to the definition in Mishra and Talman (2010), where a set of items is defined to be
weakly underdemanded, at a given price vector, if the price of each item in the set exceeds
the reservation price of the seller and the number of bidders demanding items in the set is less
than or equal to the number of items in the set. Because there are no weakly underdemanded
sets of items at the reservation prices, by definition, and since the price increments for sets in
excess demand prescribed by EDAA guarantee that the family of weakly underdemanded sets
stays empty, the prices will eventually converge to the minimum Walrasian equilibrium prices
because as soon as the price of an item becomes sufficiently large the item cannot belong to
any overdemanded set.

Sets in excess demand have a number of attractive properties. First, if a set is minimal
overdemanded, at a given price vector, then it is also in excess demand. Hence, the family
of minimal overdemanded sets is a subset of the family of sets in excess demand and, as a
consequence, the selection of a specific set for price increments in Demange et al. (1986) is
reduced to a special case of EDAA. Second, if two sets are in excess demand, at a given price
vector, so is their union. Thus, by taking the union of all sets in excess demand, at given
prices, it is possible to construct a unique set in excess demand with a largest cardinality.
We demonstrate that the modification to the auction mechanism in Demange et al. (1986)
proposed by Sankaran (1994) in fact always selects this unique largest set. Thus, the auction
mechanisms in both Sankaran (1994) and Demange et al. (1986) can be regarded as special
cases of EDAA where the price increments are based on sets of items that belong to specific
subsets of the family of sets in excess demand. In this sense, this paper establishes a common
framework and a link between Sankaran (1994) and Demange et al. (1986).

By giving the auctioneer the opportunity to base price increments on a larger subset of
the family of overdemanded sets, different paths from the reservation prices to the minimum
Walrasian equilibrium prices can be identified and some of them may be faster than the
previously known paths. To investigate this, a simulation study was conducted. The main
insight from the simulations is that by using EDAA, a non-negligible number of new paths
appear and in a majority of the cases the fastest path from the reservation prices to the
minimum equilibrium prices is neither accessible by DGS nor by the modification to DGS
suggested by Sankaran (1994).

The paper is organized as follows. Section 2 introduces the economy. Important set
definitions and set results are stated in Sections 3 and 4. Sections 5 and 6 describe EDAA
and relate it to the auction in Demange et al. (1986) and its modification proposed by Sankaran
(1994). Finally, Section 7 provides the simulation study.

2 The Model

The set of bidders and items are denoted by B and I, respectively. Each item i ∈ I has a price
pi and a reservation price ri which for simplicity and without loss of generality is set to zero.
The prices are gathered in the vector p. A price vector p is said to be feasible if pi ≥ 0 for all
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i ∈ I. The value of item i ∈ I to bidder b ∈ B is given by vbi. These values are supposed to
be integers since in reality no bidder can specify a monetary value more closely than to the
nearest dollar or cent. There is a null-item, denoted by 0, whose value is zero to all bidders
and whose price is always zero, i.e. p0 = 0 and vb0 = 0 for all b ∈ B. For notational simplicity
we let I∗ = I ∪ {0} and I+(p) = {i ∈ I | pi > 0}. The demand correspondence for bidder
b ∈ B at prices p is defined by:

Db(p) = {i ∈ I∗ | vbi − pi ≥ vbj − pj for all j ∈ I∗}.

A price vector p is said to be a Walrasian equilibrium price vector if there is an assignment
x : B �→ I∗ such that xb ∈ Db(p) for all b ∈ B and if b′ �= b and xb = xb′ then xb = 0, i.e. each
bidder is assigned an item from his demand set and if two bidders are assigned the same item
then both bidders are assigned the null-item. The pair (p, x) is a Walrasian equilibrium if p is
a Walrasian equilibrium price vector and if xb �= i for all b ∈ B then pi = 0, i.e. if an item is
not assigned to some bidder, then its price equals the zero reservation price. As demonstrated
by Shapley and Shubik (1972) the set of competitive price vectors is non-empty and forms
a complete lattice. Thus, the existence of a unique minimum Walrasian equilibrium price
vector is guaranteed.

3 Set Definitions

This section states a number of basic set definitions. Of particular importance is Definition
4 where so-called sets in excess demand are introduced. As will be demonstrated later, this
is a weaker notion than the notion of minimal overdemand (Proposition 1), and as long as
the family of sets in excess demand is non-empty there always exists a unique set in excess
demand with maximum cardinality (Proposition 2). Minimal overdemanded sets play a key
role in the auction mechanism of Demange et al. (1986), DGS for short. The unique set in
excess demand with maximum cardinality appears in the modification to DGS based on the
Ford-Fulkerson method, as proposed by Sankaran (1994).

The bidders that only demand items in the set S ⊆ I at prices p are collected in the set
O(S, p), i.e., O(S, p) = {b ∈ B | Db(p) ⊆ S}. A set of items S ⊆ I is said to be overdemanded
at prices p if the number of bidders demanding only items in S is greater than the number of
items in the set.

Definition 1. A set of items S is overdemanded at prices p if S ⊆ I and #O(S, p) > #S.

The family of overdemanded sets of items at prices p is denoted by OD(p) and is formally
given by:

OD(p) = {S ⊆ I | #O(S, p) > #S}.

A minimal overdemanded set of items is an overdemanded set of items if no proper subset of
it is overdemanded.

Definition 2. A set of items S is minimal overdemanded at prices p if S is overdemanded
at prices p and:

#T ≥ #O(T, p) for all T ⊂ S.
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The family of minimal overdemanded sets of items at prices p is denoted by MOD(p) and
is given by:

MOD(p) = {S ⊆ I | #O(S, p) > #S and #T ≥ #O(T, p) for all T ⊂ S}.

In order to provide a weakening of Definition 2, some additional notation must be introduced.
All bidders that demand some item in the set S ⊆ I at prices p are collected in the set U(S, p),
and all bidders in the subset B′ ⊆ B that demand some item in the set S ⊆ I at prices p are
gathered in the set U(S, p | B′). Formally:

U(S, p) = {b ∈ B | Db(p) ∩ S �= ∅},
U(S, p | B′) = {b ∈ B′ | Db(p) ∩ S �= ∅} for B′ ⊆ B.

Note that from the definition of O(S, p) and the above conditions it follows directly that:

(i) O(S, p) ⊆ U(S, p),

(ii) U(S, p | O(S, p)) = O(S, p).

The following definition of weakly underdemanded sets can be found in Mishra and Talman
(2010, Definition 3).

Definition 3. A set of items S is weakly underdemanded at prices p if S ⊆ I+(p) and
#U(S, p) ≤ #S.

The above definition differs slightly from the definition of underdemand in Sotomayor
(2002) in the sense that Sotomayor (2002) assumes that there is a dummy bidder that can
be allocated more that one item and in addition demands each item at the reservation prices.
Note also that the definition requires that S is a subset of I+(p). Thus, no set S where
the price of some item equals the reservation price (zero) can be weakly underdemanded.
Consequently, at the reservation prices, no set of items is weakly underdemanded. The family
of weakly underdemanded sets of items at prices p is denoted by WUD(p) and is formally
defined as follows:

WUD(p) = {S ⊆ I+(p) | #U(S, p) ≤ #S}.

We are now ready to provide a weakening of Definition 2 and introduce the notion of sets in
excess demand. A set of items S is in excess demand at prices p if at prices p the number
of items in each subset T of S is strictly smaller than the number of bidders that demand
some item in T and in addition only demand items in S. This definition can be formalized as
follows.

Definition 4. A set of items S is in excess demand at prices p if S ⊆ I and:

#U(T, p | O(S, p)) > #T for each T ⊆ S. (1)

Note that if a set is in excess demand at prices p it must be overdemanded at p. The
collection of sets of items in excess demand at prices p is denoted by ED(p) and can be
described by:

ED(p) = {S ∈ I | #U(T, p | O(S, p)) > #T for each T ⊆ S}.
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4 Set Results

Given the basic set definitions from the previous section, this section provides a number of
properties of the family of sets in excess demand at given prices p. These properties will later
be useful to prove that DGS and the Sankaran (1994) modification to DGS are in fact special
cases of the algorithm proposed in this paper.

The first result establishes that the family of minimal overdemanded sets is a subset of
the family of sets in excess demand. In this sense the notion of sets in excess demand is a
weaker notion than minimal overdemand.

Proposition 1. At any prices p it holds that MOD(p) ⊆ ED(p).

Proof. Suppose that S ∈ MOD(p) and S /∈ ED(p). S ∈ MOD(p) implies that #O(S, p) >
#S and #O(T, p) ≤ #T for all T ⊂ S. S /∈ ED(p) implies that there exists K ⊂ S such that:

#U(K, p | O(S, p)) ≤ #K.

Moreover, K is a proper subset of S, since S ∈ MOD(p) and U(S, p | O(S, p)) = O(S, p). Let
now S′ = S −K and note that S′ is a non-empty and proper subset of S. It then follows that
O(S′, p) = O(S, p) − U(K, p | O(S, p)). Thus:

#O(S′, p) = #(O(S, p) − U(K, p | O(S, p)))
≥ #O(S, p) − #U(K, p | O(S, p))
> #S − #K

= #S′.

But then S′ is a proper overdemanded subset of S at prices p, which contradicts that S ∈
MOD(p).

Note that the conversion of the above proposition is not true, i.e., a set in excess demand
need not be a minimal overdemanded set.

The next result states that the union of two sets in excess demand is again a set in excess
demand. Note however that the union of two minimal overdemanded sets is not minimal
overdemanded by definition. Hence, the weakening of minimal overdemand can be adopted
in order to analyze ”larger” sets than in DGS. This has previously been noted in an example
in Sankaran (1994, p.146).

Lemma 1. If S ∈ ED(p) and T ∈ ED(p), then S ∪ T ∈ ED(p).

Proof. To prove the result we need to demonstrate that the following condition is satisfied:

#U(K, p | O(S ∪ T, p)) > #K for each K ⊆ S ∪ T . (2)

Note first that if b ∈ O(S, p) or b ∈ O(T, p) then b ∈ O(S ∪ T, p). This result together with
the observation that there may exist a bidder b with b /∈ O(S, p)∪O(T, p) but b ∈ O(S ∪T, p)
gives:

U(L, p | O(R, p)) ⊆ U(L, p | O(S ∪ T, p)) for each L ⊆ R and R ∈ {S, T}.

Consequently, #U(L, p | O(S ∪ T, p)) ≥ #U(L, p | O(R, p)) > #L for each L ⊆ R and
R ∈ {S, T}. The last inequality follows from Definition 4 since S ∈ ED(p) and T ∈ ED(p)
by assumption. This implies that condition (2) holds if K ⊆ S or K ⊆ T .
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It remains to prove that condition (2) holds when K ⊆ S ∪ T and both K �⊆ S and
K �⊆ T . Take any non-empty A ⊆ S with A �⊆ T and C ⊆ T − S and let K = A ∪ C.
Because A ∩ C = ∅, it holds that if b ∈ O(A, p) then b /∈ O(C, p), and if b ∈ O(C, p)
then b /∈ O(A, p). Consequently, O(A, p) ∩ O(C, p) = ∅. Now, because S ∈ ED(p) and
T ∈ ED(p) by assumption it follows from Definition 4 that #U(A, p | O(S, p)) > #A and
#U(C, p | O(T, p)) > #C. These facts, together with the observation that there may exist a
bidder b with b /∈ O(S, p) ∪ O(T, p) but b ∈ O(S ∪ T, p), give:

#U(K, p | O(S ∪ T, p)) = #U(A ∪ C, p | O(S ∪ T, p))
≥ #U(A ∪ C, p | O(S, p) ∪ O(T, p))
≥ #U(A, p | O(S, p)) + #U(C, p | O(T, p))
> #A + #C

= #(A ∪ C)
= #K.

An immediate consequence of Lemma 1 is that in case the family of sets in excess demand
is non-empty, there always exists a unique set in excess demand with a maximal cardinality.

Proposition 2. If ED(p) �= ∅ then there exists a unique set S∗ ∈ ED(p) where #S∗ > #T
for any T ∈ ED(p) − {S∗}.

5 The Excess Demand Ascending Auction (EDAA)

This section proposes a new type of auction called the Excess Demand Ascending Auction
(EDAA, henceforth). The point of departure is a theorem in Mishra and Talman (2010,
Theorem 2) which states that a price vector equals the minimum Walrasian price vector if
and only if there are no overdemanded sets of items and no weakly underdemanded sets of
items at these prices. To see how this result can be used, recall from Section 3 that there
are no weakly underdemanded sets of items at the reservation prices. Hence, we need only
to specify price increments that guarantee that the family of weakly underdemanded sets
stays empty. The reason for this is that as soon as the price of an item becomes sufficiently
large the item cannot belong to any overdemanded set, and then since the price increments
guarantee that the family of weakly underdemanded sets is empty, the prices converge to the
minimum Walrasian equilibrium prices by the Mishra-Talman’s Theorem 2. This idea was
in fact outlined in Mishra and Talman (2010, pp.11-12) even though no concrete dynamic
procedure or any specific price increments were specified.

Our first task is to find a general price increment which guarantees that the family of
weakly underdemanded sets stays empty given that it is empty before the prices are increased.
To find such increments, let S be a set in excess demand at prices p and for n ∈ N let the
price vector q(S, p, n) be given by:

qi(S, p, n) =
{

pi + n if i ∈ S,
pi otherwise.

(3)

For bidder b ∈ O(S, p) we define:

kb(S, p) = min{n ∈ N | Db(q(S, p, n)) − S �= ∅}. (4)
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The interpretation of kb(S, p) is that it identifies the minimum price increase at prices p of
the items in S required for bidder b to leave O(S, p), or equivalently, the amount by which
the prices of items in S can be raised at prices p until bidder b becomes indifferent between
his currently demanded items and an item not in S. Note that under the separability and
linearity assumptions, the minimum price increase kb(S, p) for the items in S is a positive
integer and can easily be computed for any bidder b ∈ O(S, p).

Lemma 2. Suppose that S ∈ ED(p) and WUD(p) = ∅ and let k = min{kb(S, p)|b ∈
O(S, p)}. Then k ≥ 1 and WUD(q(S, p, k)) = ∅.

Proof. Let q = q(S, p, k). It is clear that k ≥ 1 because kb(S, p) is a positive integer for every
b ∈ O(S, p). In order to show that WUD(q) = ∅, we need to prove that for an arbitrary
T ⊆ I+(q) it holds that:

#U(T, q) > #T. (5)

Three different cases are considered.
Case (i) T ⊆ S. We first make three observations. First, U(T, q | O(S, p)) ⊆ U(T, q)

because O(S, p) ⊆ B. Second, Db(p) ⊆ Db(q) for all b ∈ O(S, p) by definition of kb(S, p)
and construction of q. Consequently, if b ∈ U(T, p | O(S, p)), then b ∈ U(T, q | O(S, p)),
implying that #U(T, q | O(S, p)) ≥ #U(T, p | O(S, p)). Third, #U(T, p | O(S, p)) > #T
since S ∈ ED(p). From these three observations, we conclude:

#U(T, q) ≥ #U(T, q | O(S, p)) ≥ #U(T, p | O(S, p)) > #T,

which demonstrates that condition (5) is satisfied when T ⊆ S.
Case (ii) T ⊆ I+(p) − S. Since WUD(p) = ∅ and T ⊆ I+(p) it follows that #U(T, p) >

#T . Moreover, by construction of q, an item i ∈ T belongs to Db(q) if it belongs to Db(p),
and therefore U(T, p) ⊆ U(T, q). Hence:

#U(T, q) ≥ #U(T, p) > #T,

i.e., condition (5) is satisfied when T ⊆ I+(p) − S.
Case (iii) T = A∪C where ∅ �= A ⊆ S and ∅ �= C ⊆ I+(p)− S. Clearly, A∩C = ∅. By

construction of q it holds that if i ∈ C belongs to Db(p) then it also belongs to Db(q). Thus,
U(C, p) ⊆ U(C, q), and as a consequence:

#U(T, q) = #U(A ∪ C, q) = #(U(A, q) ∪ U(C, q)) ≥ #(U(A, q) ∪ U(C, p)). (6)

Because, by construction of q, qi > pi for i ∈ A and qi = pi for i ∈ C, it follows that
U(A, q) ∩ U(C, p) = ∅, and therefore:

#(U(A, q) ∪ U(C, p)) = #U(A, q) + #U(C, p). (7)

Since A ⊆ S it follows from Case (i) that #U(A, q) > #A. Moreover, because WUD(p) = ∅
and C ⊆ I+(p) it follows that #U(C, p) > #C. These observations together with (6) and (7)
yield:

#U(T, q) > #A + #C = #(A ∪ C) = #T,

which concludes the proof.

Given the price increments in Lemma 2, EDAA can be formalized as follows.
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Algorithm 1 (EDAA). Introduce an iteration counter t and let pt denote the price vector in
iteration t. Set t := 0 and initialize the price vector to the reservation prices, p0 := 0.

1. Collect the demand sets Db(pt) of every bidder b ∈ B.

2. If there is no overdemanded set of items at pt, the algorithm is terminated. Otherwise:

3. Choose a set St ∈ ED(pt).

4. Compute pt+1 = q(St, pt, kt) where kt = min{kb(St, pt) | b ∈ O(St, pt)}.

5. Set t := t + 1 and start a new iteration from Step 1.

Our next theorem states that EDAA converges to the minimum Walrasian equilibrium
prices in a finite number of iterations. The proof of the result has already been stated in the
beginning of this section. That is, because there are no weakly underdemanded items at the
reservation prices, the price increments defined in the algorithm guarantee that the family of
weakly underdemanded items stays empty. The proof then follows directly from Mishra and
Talman (2010, Theorem 2), and the observation that for sufficiently large price increments
no set of items can be overdemanded.

Theorem 1. EDAA converges to the minimum Walrasian equilibrium prices in a finite num-
ber of iterations.

The next observation is that DGS is a special case of EDAA.

Algorithm 2 (DGS). DGS replaces Step 3 of Algorithm 1 with:

3. Choose a set St ∈ MOD(pt).

Proposition 3. DGS is a special case of EDAA.

Proof. This result is a direct consequence of the fact that the price increments in DGS are
based on minimal overdemanded sets of items and by that Proposition 1 a minimal overde-
manded set is a set in excess demand.

Note that in the original description of DGS, the price update for an item i ∈ St is given
by pt

i + 1 and not by pt
i + kt as in Step 4. However, both DGS and EDAA converge to the

minimum Walrasian equilibrium prices regardless of whether the price increments are taken
to be equal to 1 or equal to kt.

We end this section with a numerical example that demonstrates EDAA and highlights
the differences between EDAA and DGS.

Example 1. Suppose that B = {1, 2, 3, 4, 5} and I = {1, 2, 3}. The values vbi, b ∈ B, i ∈ I,
of the items to the bidders are given by the matrix:

V =

⎡
⎢⎢⎢⎢⎣

24 8 32
0 12 66
99 66 53
85 30 18
45 74 94

⎤
⎥⎥⎥⎥⎦ , (8)
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where the column corresponding to the null-item, vb0 = 0, has been omitted. At the reserva-
tion prices r = (0, 0, 0) the bidders’ initial demand sets become D1(r) = D2(r) = D5(r) = {3}
and D3(r) = D4(r) = {1}. At the reservation prices r we have:

ED(r) = {{1}, {3}, {1, 3}},
MOD(r) = {{1}, {3}}.

In Figure 1, all possible paths from the seller’s reservation prices r = (0, 0, 0) to the minimum
Walrasian equilibrium prices pmin = (79, 46, 66) are represented in the form of a graph where
each vertex corresponds to a price vector reachable by EDAA and each arc is associated with
a specific set in excess demand used to update prices. The solid arcs and the shaded vertices
are not reachable using DGS. As can be seen from Figure 1, updating prices based on EDAA
leads to a Walrasian equilibrium in between 5-12 iterations depending on the specific choices
of sets in excess demand.1 In this example, it is also interesting to note that if the selection of
the specific set in excess demand is based on a rule where minimal overdemanded sets are not
chosen whenever possible (e.g. if the set {1, 3} is selected in the first price update), EDAA
converges to the minimum Walrasian equilibrium prices in at most 8 iterations. DGS on the
other hand requires between 8-12 iterations before termination, because DGS can only follow
the dashed paths in Figure 1. �

6 Computing Sets in Excess Demand

A for practical purposes important modification to DGS based on the Ford-Fulkerson method
was proposed by Sankaran (1994), and has been used by e.g. Mishra and Parkes (2009) for
computer simulations. It is motivated by the fact that Steps 2 and 3 of Algorithm 2 imply
searching 2#I sets to find a minimal overdemanded set, which is computationally intractable
as the number of items increases. The Ford-Fulkerson method can be used to find a (not
necessarily minimal overdemanded) set of items whose prices can be raised in polynomial
time. In this section, we show that the algorithm proposed by Sankaran (1994) is in fact a
special case of EDAA.

The Ford-Fulkerson method is a classical method for network flow problems, described by
e.g. Bertsekas (1998), that can be used to find a feasible assignment of maximum cardinality.
By feasible assignment we mean a set X(p) ⊆ {(b, i) | b ∈ B, i ∈ I∗} of bidder-item pairs
at prices p such that i ∈ Db(p) for all (b, i) ∈ X(p), and all b ∈ B and all i ∈ I are part
of at most one pair from X(p). No assumption is made on the cardinality of X(p), but if
#X(p) = #B each bidder is assigned an item and p is therefore a Walrasian equilibrium price
vector. This observation can be used to formulate an alternative termination criterion for
Step 2 of Algorithm 1.

Starting from an initial feasible assignment, the Ford-Fulkerson method iteratively updates
X(p) based on augmenting paths. An augmenting path with respect to X(p) is a sequence
on the form P = (b0, i0, . . . , bn, in) such that each bidder bj , j �= 0, is assigned an item by
X(p), each items ij , j �= n, is assigned to a bidder by X(p), and ij �= 0 for all j �= n. This
informal characterization corresponds to a bipartite matching problem modified to account
for the null-item.

1There are two paths through the graph that require 5 iterations to converge. Both of them pass trough
the vertex (33, 0, 20).
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Figure 1: Graph corresponding to an auction with three items and five bidders whose valu-
ations are given by (8). Vertices are labeled with current prices in EDAA. Arcs are labeled
with the sets in excess demand used to update prices.
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Algorithm 3 (Ford-Fulkerson). Initialize the feasible assignment to the empty set, X(p) :=
∅. For each iteration:

1. Find an augmenting path P = (b0, i0, . . . , bn, in) with respect to X(p), e.g. using Algo-
rithm 4. If no such P exists, then #X(p) is maximized and the algorithm is terminated.
Otherwise:

2. Augment the assignment along P:

X(p) := (X(p) − {(bj , ij−1) | j ∈ {1, 2, . . . , n}}) ∪ {(bj , ij) | j ∈ {0, 1, . . . , n}} .

3. Start a new iteration from Step 1.

For the considered problem the augmentation in Step 2 of Algorithm 3 increases the
cardinality of X(p) by one. Thus #X(p) is strictly increasing as long as there is an augmenting
path, and convergence is achieved in less than or equal to #B iterations. We next consider
a breadth-first search for augmenting paths, given in Algorithm 4 for the ascending auction
context.

Algorithm 4 (Breadth-first Search for an Augmenting Path). Given a feasible assignment
X(p), let the initial set of bidders be defined by:

B0 = {b ∈ B | (b, i) /∈ X(p) for all i ∈ I∗}, (9)

and label b ∈ B0 with s. All other bidders and items are initially unlabeled. Introduce the
iteration counter n. For each iteration n = 0, 1, . . . :

1. Define the set of items:

In = {i ∈ I∗ − ∪n−1
j=0 Ij | (b, i) /∈ X(p) and i ∈ Db(p) for some b ∈ Bn}. (10)

Label all i ∈ In with a respective b.

2. If 0 ∈ In or there is an i ∈ In such that (b, i) /∈ X(p) for all b ∈ B, a shortest augmenting
path has been found. Terminate the algorithm.

3. If In = ∅, no augmenting path exists. Terminate the algorithm.

4. Define the set of bidders:

Bn+1 = {b ∈ B − ∪n
j=0Bj | (b, i) ∈ X(p) for some i ∈ In}. (11)

Label all b ∈ Bn+1 with a respective i.

5. Set n := n + 1 and start a new iteration from Step 1.

In case Algorithm 4 terminates with In = ∅, no augmenting path exists and the assignment
X(p) has maximum cardinality. Otherwise a shortest augmenting path (b0, i0, . . . , bn, in), with
bj ∈ Bj and ij ∈ Ij for j = 0, 1, . . . , n), with respect to X(p) can be found by backtracking
assigned labels starting from 0 if 0 ∈ In, or from any i ∈ In such that (b, i) /∈ X(p) for all
b ∈ B, until a bidder with label s is encountered.
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The breadth-first search is guaranteed to find a shortest augmenting path if one exists.
Several possible labels may exist in Steps 1 and 4 of Algorithm 4, and there may be more than
one shortest augmenting path. The Ford-Fulkerson method converges regardless of the path
and labels chosen. Furthermore, if an augmenting path does not exist the set of labeled items
at the termination of the search is in excess demand, and can be used in Step 3 of Algorithm
1.

The final result of the paper establishes that DGS with the modification proposed by
Sankaran (1994) is a special case of EDAA where the prices are updated for the unique set
in excess demand with maximum cardinality (recall from Proposition 2 that such a set exists
as long as MOD(p) �= ∅). To prove this result, two lemmas are needed.

Lemma 3. Suppose that Algorithm 4 terminates with In = ∅, and that S = ∪n
j=0Ij. Then

O(S, p) = ∪n
j=0Bj, and for each i ∈ S there is some b ∈ O(S, p) such that (b, i) ∈ X(p).

Proof. To show that O(S, p) = ∪n
j=0Bj we prove that for any b ∈ B, b ∈ ∪n

j=0Bj if and only
if Db(p) ⊆ S. We do this by considering three mutually exclusive cases for bidders b ∈ B.

Case (i) (b, i) ∈ X(p) for some i /∈ S. Then Db(p) � S, so it must be shown that b is not
an element of some Bj . The condition in (11) that (b′, i′) ∈ X(p) for some i′ ∈ Ij is always
false for b′ = b since i /∈ S by assumption. It follows that b /∈ ∪n

j=0Bj .
Case (ii) (b, i) ∈ X(p) for some i ∈ S. Without loss of generality, assume that i ∈ Im for

0 ≤ m < n, where the inequality follows from the assumption In = ∅. Equation (11) gives:

Bm+1 = {b′ ∈ B − ∪m
j=0Bj | (b′, i′) ∈ X(p) for some i′ ∈ Im}

⊇ {b′ ∈ {b} − ∪m
j=0Bj},

i.e. b ∈ Bm+1. To show that Db(p) ⊆ S we need only compute the set of items Im+1 in the
next iteration from (10):

Im+1 = {i′ ∈ I∗ − ∪m
j=0Ij | (b′, i′) /∈ X(p) and i′ ∈ Db′(p) for some b′ ∈ Bm+1}

⊇ {i′ ∈ I∗ − ∪m
j=0Ij | i′ ∈ Db(p) − {i}}

= Db(p) − ∪m
j=0Ij ,

where i ∈ Im has been used in the last equality.
Case (iii) (b, i) /∈ X(p) for all i ∈ I∗. From (9) we have b ∈ B0. Insertion in (10) yields

Db(p) ⊆ I0, which concludes the proof of the first statement.
To prove the second statement we observe that 0 /∈ S, and for each i ∈ S there is some

b ∈ B such that (b, i) ∈ X(p). Otherwise the algorithm would terminate in Step 2, which
violates the assumption In = ∅. From Case (ii) above it follows that b ∈ O(S, p).

Lemma 4. Suppose that Algorithm 4 terminates with In = ∅, and that S = ∪n
j=0Ij. If

b /∈ O(S, p), then (b, i) ∈ X(p) for some i /∈ S.

Proof. The result follows from Lemma 3, and Cases (i) and (iii) from its proof.

Proposition 4. DGS with the modification St = ∪n
j=0Ij in iteration t, as proposed by

Sankaran (1994), is a special case of EDAA, where St is the unique set in excess demand at
prices pt with maximum cardinality.
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Proof. To prove the theorem, we demonstrate that if Algorithm 4 terminates with In = ∅,
then S = ∪n

j=0Ij is the set in excess demand with maximum cardinality.
By assumption Algorithm 4 is not terminated in Step 2, so it follows that 0 /∈ S, and

thus S ⊆ I. Lemma 3 states that all items in S are assigned to bidders in O(S, p). It follows
directly that #U(T, p | O(S, p)) ≥ #T for all T ⊆ S. To prove that S ∈ ED(p), suppose
#U(T, p | O(S, p)) = #T for some T ⊆ S.

Let K = {b ∈ O(S, p) | (b, i) ∈ X(p) for some i ∈ T} denote the set of bidders that are
assigned an item from T . If #U(T, p | O(S, p)) = #T then Db(p) ∩ T = ∅ holds for all
b ∈ O(S, p) − K. Using Lemma 3 we have from (10) that In ∩ T �= ∅ only if Bn ∩ K �= ∅,
and from (11) that Bn+1 ∩K �= ∅ only if In ∩ T �= ∅. Since the initial set of bidders satisfies
B0∩K = ∅ we obtain the contradictions T � S and K � O(S, p). Thus #U(T, p | O(S, p)) >
#T for all T ⊆ S, which completes the proof that S ∈ ED(p).

Because S is a set in excess demand we know from Proposition 2 that there exists a unique
S∗ ∈ ED(p) of maximum cardinality, and from Lemma 1 it follows that S ⊆ S∗. To prove
that S = S∗, suppose S ⊂ S∗.

Denote the set of bidders that are assigned an item in S∗ − S by L = {b ∈ B − O(S, p) |
(b, i) ∈ X(p) for some i ∈ S∗ − S}, and the set of assigned items in S∗ − S by SA = {i ∈
S∗ − S|(b, i) ∈ X(p) for some b ∈ B − O(S, p)}. Without loss of generality we assume that
SA �= ∅. Otherwise O(S∗, p) = O(S, p) by Lemma 4, and U(S∗ − S, p | O(S∗, p)) = ∅ after
applying Lemma 3, thus implying that S∗ is not in excess demand.

Note that Db(p) � S∗ may hold for some b ∈ L, and that U(SA, p | O(S∗, p)) = ∅ from
Lemma 3. We obtain:

#U(SA, p | O(S∗, p)) = #U(SA, p | O(S∗, p) − O(S, p))
≤ #U(SA, p | L) = #SA.

Hence, if S ⊂ S∗, then S cannot be in excess demand, thereby proving that S is the set in
excess demand with maximum cardinality.

Given Proposition 4 and the description of Algorithms 3 and 4, the Ford-Fulkerson method
can be implemented in EDAA to identify the set in excess demand with maximum cardinality.

Algorithm 5 (EDAA with Ford-Fulkerson). Replace Steps 2 and 3 of Algorithm 1 with:

2. Compute an assignment X(p) of maximum cardinality using the Ford-Fulkerson method
(Algorithm 3). If |X(p)| = |B| the algorithm is terminated. Otherwise:

3. Let St = ∪n
j=0Ij be the set of labeled items upon termination of the augmenting path

search (Algorithm 4) in the last Ford-Fulkerson iteration.

We end this section by noting that if Algorithm 5 is applied to the problem described in
Example 1, the unique path trough the graph in Figure 1 is the path marked by bold (solid or
dashed) arcs to the far right in the figure. Thus, the minimum Walrasian equilibrium prices
are identified in 7 iterations. This should be compared to the fastest path using EDAA or
DGS which is 5 iterations and 8 iterations, respectively.

7 Simulations

This section presents some computational results obtained by numerical simulation. The main
objective is to illustrate that EDAA is a significant extension of previously known mechanisms,
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i.e. that there is a large number of paths from the reservation prices to the minimum Wal-
rasian equilibrium prices that are neither reachable by DGS nor by the modification to DGS
suggested by Sankaran (1994). This is achieved by creating 500 sets of randomized auction
graphs using the same procedure as in Example 1 (see in particular Figure 1). In the simu-
lations it is assumed that there are five items (not counting the null-item) and eight bidders.
The values of items to bidders are given by vbi = max{0, νbi} where νbi are pseudo-random
integers uniformly distributed in the range [−33, 100], i.e. each vbi is zero with a probability
of approximately 25%. The reservation prices ri are set to zero for all items i ∈ I.

Given the above setup, Table 1 specifies the mean number of vertices (column 2) and arcs
(column 3) for the 500 sample graphs. As can be seen from the table, EDAA significantly
increases the average size of the auction graphs and, consequently, also the average number
of paths through the graphs. Note also that because the modification to DGS proposed by
Sankaran (1994) always gives a unique path, the mean number of vertices and arcs is naturally
small.

A for practical purposes important issue is the termination speed. The expected number
of iterations based on a random walk assumption for the three auction mechanisms are stated
in column 4 of Table 1. As can be seen from the table, DGS is clearly outperformed by the
other two mechanisms, and the modification to DGS suggested by Sankaran (1994) performs
best in terms of the expected number of iterations. A closer investigation reveals that the
Sankaran-modification finds the shortest path in 174 of the 500 investigated cases (34.8%).
The DGS subgraph contains it only in 1 of the 500 cases (0.2%). This also means that
in the remaining cases, the fastest path is neither accessible by DGS nor by the Sankaran-
modification. However, the fastest path is accessible by EDAA in all 500 cases (100%) by
construction and Propositions 3 and 4.

Table 1: Mean number of vertices |V |mean, mean number of arcs |A|mean, and expected number
of iterations E[t] for the 500 sample graphs (standard deviation in parenthesis). Values have
been rounded to four significant digits.

Auction type |V |mean |A|mean E[t]
EDAA 7925 (8484) 47896 (75291) 13.23 (3.501)
DGS 2600 (2598) 5962 (6418) 22.36 (11.34)
Sankaran 8.750 (1.561) 7.750 (1.561) 8.750 (1.561)
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