95,790 research outputs found
Extent and character of early tertiary penetrative deformation, Sonora, Northwest Mexico
Reconnaissance field work has led to the recognition of extensive Early Tertiary gneiss and schist which are distinguished by weakly developed to highly conspicous northeast to east-trending stretching lineation commonly accompanied by low-dipping foliation. This structural fabric has been imposed on Precambrian to Paleogene rocks. Regionally, minimum ages of deformation are based upon interpreted U-Pb isotopic ages from suites of cogenetic zircon from the Paleogene orthogneiss. Locally, the interpreted ages indicate that ductile deformation continued as late as Oligocene (Anderson and others, 1980; Silver and Anderson, 1984). The consistency of the deformational style is such that, although considerable variation in intensity exists, the fabric can be recognized and correlated in rocks away from the Paleogene orthogneiss
Numerical solution to the glancing sidewall oblique shock wave/turbulent boundary layer interaction in three dimension
A supersonic three-dimensional viscous forward-marching computer design code called PEPSIS is used to obtain a numerical solution of the three-dimensional problem of the interaction of a glancing sidewall oblique shock wave and a turbulent boundary layer. Very good results are obtained for a test case that was run to investigate the use of the wall-function boundary-condition approximation for a highly complex three-dimensional shock-boundary layer interaction. Two additional test cases (coarse mesh and medium mesh) are run to examine the question of near-wall resolution when no-slip boundary conditions are applied. A comparison with experimental data shows that the PEPSIS code gives excellent results in general and is practical for three-dimensional supersonic inlet calculations
A comparison of Gemini and ERTS imagery obtained over southern Morocco
A mosaic constructed from three ERTS MSS band 5 images enlarged to 1:500,000 compares favorably with a similar scale geologic map of southern Morocco, and a near-similar scale Gemini 5 photo pair. A comparative plot of lineations and generalized geology on the three formats show that a significantly greater number of probable fractures are visible on the ERTS imagery than on the Gemini photography, and that both orbital formats show several times more lineaments than were previously mapped. A plot of mineral occurrences on the structural overlays indicates that definite structure-mineralization relationships exist; this finding is used to define underdeveloped areas which are prospective for mineralization. More detailed mapping is possible using MSS imagery than on Gemini 5 photographs, and in addition, the ERTS format is not restricted to limited coverage
Validation of a three-dimensional viscous analysis of axisymmetric supersonic inlet flow fields
A three-dimensional viscous marching analysis for supersonic inlets was developed. To verify this analysis several benchmark axisymmetric test configurations were studied and are compared to experimental data. Detailed two-dimensional results for shock-boundary layer interactions are presented for flows with and without boundary layer bleed. Three dimensional calculations of a cone at angle of attack and a full inlet at attack are also discussed and evaluated. Results of the calculations demonstrate the code's ability to predict complex flow fields and establish guidelines for future calculations using similar codes
Development of Collembolans after coversion towards organic farming
In Northern Germany, a diverse and complex experimental farm of the Federal Agricultural Research Centre (FAL) was set-up in 2001 covering all main aspects of organic farming. Previously, the 600 ha farm had been managed conventionally. Adjacent conventional farms were used as reference. The aim of this project was to study collembolans, microbial biomass and soil organic carbon in six organically farmed fields managed as a crop rotation of six different crops compared with an adjacent conventionally managed field. We hypothesised that the specific management in organic farming promotes soil biota. Soil samples were taken during the growing season in 2004. Collembolan abundances and microbial biomass were lower under organic management, but, generally, collembolan diversity was higher in organically farmed fields combined with a shifting in the dominance structure of the species. This result reveals that, even after three years, the soil biota is still changing with management conversion
Comparison of the phase diagram of the half-filled layered organic superconductors with the phase diagram of the RVB theory of the Hubbard-Heisenberg model
We present an resonating valence bond (RVB) theory of superconductivity for
the Hubbard--Heisenberg model on an anisotropic triangular lattice. We show
that these calculations are consistent with the observed phase diagram of the
half-filled layered organic superconductors, such as the beta, beta', kappa and
lambda phases of (BEDT-TTF)_2X [bis(ethylenedithio)tetrathiafulvalene] and
(BETS)_2X [bis(ethylenedithio)tetraselenafulvalene]. We find a first order
transition from a Mott insulator to a d_{x^2-y^2} superconductor with a small
superfluid stiffness and a pseudogap with d_{x^2-y^2} symmetry. The
Mott--Hubbard transition can be driven either by increasing the on-site Coulomb
repulsion, U, or by changing the anisotropy of the two hopping integrals, t'/t.
Our results suggest that the ratio t'/t plays an important role in determining
the phase diagram of the organic superconductors.Comment: 4 pages, 3 figur
Unresolved versus resolved: testing the validity of young simple stellar population models with VLT/MUSE observations of NGC 3603
CONTEXT. Stellar populations are the building blocks of galaxies including
the Milky Way. The majority, if not all extragalactic studies are entangled
with the use of stellar population models given the unresolved nature of their
observation. Extragalactic systems contain multiple stellar populations with
complex star formation histories. However, their study is mainly based upon the
principles of simple stellar populations (SSP). Hence, it is critical to
examine the validity of SSP models. AIMS. This work aims to empirically test
the validity of SSP models. This is done by comparing SSP models against
observations of spatially resolved young stellar population in the
determination of its physical properties, i.e. age and metallicity. METHODS.
Integral field spectroscopy of a young stellar cluster in the Milky Way, NGC
3603, is used to study the properties of the cluster both as a resolved and
unresolved stellar population. The unresolved stellar population is analysed
using the H equivalent width as an age indicator, and the ratio of
strong emission lines to infer metallicity. In addition, spectral energy
distribution (SED) fitting using STARLIGHT, is used to infer these properties
from the integrated spectrum. Independently, the resolved stellar population is
analysed using the color-magnitude diagram (CMD) for age and metallicity
determination. As the SSP model represents the unresolved stellar population,
the derived age and metallicity are put to test whether they agree with those
derived from resolved stars. RESULTS. The age and metallicity estimate of NGC
3603 derived from integrated spectroscopy are confirmed to be within the range
of those derived from the CMD of the resolved stellar population, including
other estimates found in the literature. The result from this pilot study
supports the reliability of SSP models for studying unresolved young stellar
populations.Comment: 9 pages, 5 figures, accepted to A&
Degenerate mixing of plasma waves on cold, magnetized single-species plasmas
In the cold-fluid dispersion relation ω = ω_p/[1+(k_⊥/k_z)^(2]1/2) for Trivelpiece-Gould waves on an infinitely long magnetized plasma cylinder, the transverse and axial wavenumbers appear only in the combination k_⊥/k_z. As a result, for any frequency ω<ω_p, there are infinitely many degenerate waves, all having the same value of k_⊥/k_z. On a cold finite-length plasma column, these degenerate waves reflect into one another at the ends; thus, each standing-wave normal mode of the bounded plasma is a mixture of many degenerate waves, not a single standing wave as is often assumed. A striking feature of the many-wave modes is that the short-wavelength waves often add constructively along resonance cones given by dz/dr = ±(ω_p^2/ω^2-1)^(1/2). Also, the presence of short wavelengths in the admixture for a predominantly long-wavelength mode enhances the viscous damping beyond what the single-wave approximation would predict. Here, numerical solutions are obtained for modes of a cylindrical plasma column with rounded ends. Exploiting the fact that the modes of a spheroidal plasma are known analytically (the Dubin modes), a perturbation analysis is used to investigate the mixing of low-order, nearly degenerate Dubin modes caused by small deformations of a plasma spheroid
- …