3,073 research outputs found

    Output from Bose condensates in tunnel arrays: the role of mean-field interactions and of transverse confinement

    Full text link
    We present numerical studies of atomic transport in 3D and 1D models for a mode-locked, pulsed atom laser as realized by Anderson and Kasevich [Science 281 (1998) 1686] using an elongated Bose condensate of 87{}^{87}Rb atoms poured into a vertical optical lattice. From our 3D results we ascertain in a quantitative manner the role of mean-field interactions in determining the shape and the size of the pulses in the case of Gaussian transverse confinement. By comparison with 1D simulations we single out a best-performing 1D reduction of the mean-field interactions, which yields quantitatively useful predictions for all main features of the matter output.Comment: 12 pages, 2 figure

    1D model for the dynamics and expansion of elongated Bose-Einstein condensates

    Full text link
    We present a 1D effective model for the evolution of a cigar-shaped Bose-Einstein condensate in time dependent potentials whose radial component is harmonic. We apply this model to investigate the dynamics and expansion of condensates in 1D optical lattices, by comparing our predictions with recent experimental data and theoretical results. We also discuss negative-mass effects which could be probed during the expansion of a condensate moving in an optical lattice.Comment: RevTeX4, 8 pages, 10 figures, extended and revised versio

    A low-voltage retarding-field Mott polarimeter for photocathode characterization

    Full text link
    Nuclear physics experiments at Thomas Jefferson National Accelerator Facility's CEBAF rely on high polarization electron beams. We describe a recently commissioned system for prequalifying and studying photocathodes for CEBAF with a load-locked, low-voltage polarized electron source coupled to a compact retarding-field Mott polarimeter. The polarimeter uses simplified electrode structures and operates from 5 to 30 kV. The effective Sherman function for this device has been calibrated by comparison with the CEBAF 5 MeV Mott polarimeter. For elastic scattering from a thick gold target at 20 keV, the effective Sherman function is 0.201(5). Its maximum efficiency at 20 keV, defined as the detected count rate divided by the incident particle current, is 5.4(2) x 10-4, yielding a figure-of-merit, or analyzing power squared times efficiency, of 1.0(1) x 10-5. The operating parameters of this new polarimeter design are compared to previously published data for other compact Mott polarimeters of the retarding-field type.Comment: 9 figure

    Probing the energy bands of a Bose-Einstein condensate in an optical lattice

    Full text link
    We simulate three experimental methods which could be realized in the laboratory to probe the band excitation energies and the momentum distribution of a Bose-Einstein condensate inside an optical lattice. The values of the excitation energies obtained in these different methods agree within the accuracy of the simulation. The meaning of the results in terms of density and phase deformations is tested by studying the relaxation of a phase-modulated condensate towards the ground state.Comment: 5 pages, 5 figure

    Urea recycling in beef cattle fed prairie hay- based diets

    Get PDF
    Maximizing utilization of native rangeland is an important aspect of the cow/calf phase of beef production. Native rangeland is often of poor quality (less than 7% crude protein). Protein content of the rangeland is important because nitrogen is a key growth factor used by ruminal microbes. Without adequate nitrogen, the ruminal ecosystem will not operate at peak efficiency, which subsequently reduces the supply of nutrients to the animal. Historically, producers have provided supplemental nutrients to their cattle to achieve maximum performance. Both supplemental protein and energy have been provided to cattle consuming low-quality forage with varying levels of success. Typically, supplemental energy without adequate protein reduces fiber digestion by cattle. On the other hand, supplemental protein consistently improves overall performance

    Trapping of Projectiles in Fixed Scatterer Calculations

    Full text link
    We study multiple scattering off nuclei in the closure approximation. Instead of reducing the dynamics to one particle potential scattering, the scattering amplitude for fixed target configurations is averaged over the target groundstate density via stochastic integration. At low energies a strong coupling limit is found which can not be obtained in a first order optical potential approximation. As its physical explanation, we propose it to be caused by trapping of the projectile. We analyse this phenomenon in mean field and random potential approximations. (PACS: 24.10.-i)Comment: 15 page

    Number--conserving model for boson pairing

    Full text link
    An independent pair ansatz is developed for the many body wavefunction of dilute Bose systems. The pair correlation is optimized by minimizing the expectation value of the full hamiltonian (rather than the truncated Bogoliubov one) providing a rigorous energy upper bound. In contrast with the Jastrow model, hypernetted chain theory provides closed-form exactly solvable equations for the optimized pair correlation. The model involves both condensate and coherent pairing with number conservation and kinetic energy sum rules satisfied exactly and the compressibility sum rule obeyed at low density. We compute, for bulk boson matter at a given density and zero temperature, (i) the two--body distribution function, (ii) the energy per particle, (iii) the sound velocity, (iv) the chemical potential, (v) the momentum distribution and its condensate fraction and (vi) the pairing function, which quantifies the ODLRO resulting from the structural properties of the two--particle density matrix. The connections with the low--density expansion and Bogoliubov theory are analyzed at different density values, including the density and scattering length regime of interest of trapped-atoms Bose--Einstein condensates. Comparison with the available Diffusion Monte Carlo results is also made.Comment: 21 pages, 12 figure

    Moderate deviations for the determinant of Wigner matrices

    Full text link
    We establish a moderate deviations principle (MDP) for the log-determinant logdet(Mn)\log | \det (M_n) | of a Wigner matrix MnM_n matching four moments with either the GUE or GOE ensemble. Further we establish Cram\'er--type moderate deviations and Berry-Esseen bounds for the log-determinant for the GUE and GOE ensembles as well as for non-symmetric and non-Hermitian Gaussian random matrices (Ginibre ensembles), respectively.Comment: 20 pages, one missing reference added; Limit Theorems in Probability, Statistics and Number Theory, Springer Proceedings in Mathematics and Statistics, 201

    Black holes as mirrors: quantum information in random subsystems

    Get PDF
    We study information retrieval from evaporating black holes, assuming that the internal dynamics of a black hole is unitary and rapidly mixing, and assuming that the retriever has unlimited control over the emitted Hawking radiation. If the evaporation of the black hole has already proceeded past the "half-way" point, where half of the initial entropy has been radiated away, then additional quantum information deposited in the black hole is revealed in the Hawking radiation very rapidly. Information deposited prior to the half-way point remains concealed until the half-way point, and then emerges quickly. These conclusions hold because typical local quantum circuits are efficient encoders for quantum error-correcting codes that nearly achieve the capacity of the quantum erasure channel. Our estimate of a black hole's information retention time, based on speculative dynamical assumptions, is just barely compatible with the black hole complementarity hypothesis.Comment: 18 pages, 2 figures. (v2): discussion of decoding complexity clarifie
    corecore