3,805 research outputs found
Mechanisms of Spontaneous Current Generation in an Inhomogeneous d-Wave Superconductor
A boundary between two d-wave superconductors or an s-wave and a d-wave
superconductor generally breaks time-reversal symmetry and can generate
spontaneous currents due to proximity effect. On the other hand, surfaces and
interfaces in d-wave superconductors can produce localized current-carrying
states by supporting the T-breaking combination of dominant and subdominant
order parameters. We investigate spontaneous currents in the presence of both
mechanisms and show that at low temperature, counter-intuitively, the
subdominant coupling decreases the amplitude of the spontaneous current due to
proximity effect. Superscreening of spontaneous currents is demonstrated to be
present in any d-d (but not s-d) junction and surface with d+id' order
parameter symmetry. We show that this supercreening is the result of
contributions from the local magnetic moment of the condensate to the
spontaneous current.Comment: 4 pages, 5 figures, RevTe
On the partial connection between random matrices and interacting particle systems
In the last decade there has been increasing interest in the fields of random
matrices, interacting particle systems, stochastic growth models, and the
connections between these areas. For instance, several objects appearing in the
limit of large matrices arise also in the long time limit for interacting
particles and growth models. Examples of these are the famous Tracy-Widom
distribution functions and the Airy_2 process. The link is however sometimes
fragile. For example, the connection between the eigenvalues in the Gaussian
Orthogonal Ensembles (GOE) and growth on a flat substrate is restricted to
one-point distribution, and the connection breaks down if we consider the joint
distributions. In this paper we first discuss known relations between random
matrices and the asymmetric exclusion process (and a 2+1 dimensional
extension). Then, we show that the correlation functions of the eigenvalues of
the matrix minors for beta=2 Dyson's Brownian motion have, when restricted to
increasing times and decreasing matrix dimensions, the same correlation kernel
as in the 2+1 dimensional interacting particle system under diffusion scaling
limit. Finally, we analyze the analogous question for a diffusion on (complex)
sample covariance matrices.Comment: 31 pages, LaTeX; Added a section concerning the Markov property on
space-like path
Diffusion and Home Range Parameters for Rodents: Peromyscus maniculatus in New Mexico
We analyze data from a long term field project in New Mexico, consisting of
repeated sessions of mark-recaptures of Peromyscus maniculatus (Rodentia:
Muridae), the host and reservoir of Sin Nombre Virus (Bunyaviridae:
Hantavirus). The displacements of the recaptured animals provide a means to
study their movement from a statistical point of view. We extract two
parameters from the data with the help of a simple model: the diffusion
constant of the rodents, and the size of their home range. The short time
behavior shows the motion to be approximately diffusive and the diffusion
constant to be 470+/-50m^2/day. The long time behavior provides an estimation
of the diameter of the rodent home ranges, with an average value of 100+/-25m.
As in previous investigations directed at Zygodontomys brevicauda observations
in Panama, we use a box model for home range estimation. We also use a harmonic
model in the present investigation to study the sensitivity of the conclusions
to the model used and find that both models lead to similar estimates.Comment: The published paper in Ecol. Complexity has an old version of Figure
6. Here we have put the correct version of Figure
Quality and location choices under price regulation
In a model of spatial competition, we analyze the equilibrium outcomes in markets where the product price is exogenous. Using an extended version of the Hotelling model, we assume that firms choose their locations and the quality of the product they supply. We derive the optimal price set by a welfarist regulator. If the regulator can commit to a price prior to the choice of locations, the optimal (second-best) price causes overinvestment in quality and an insufficient degree of horizontal differentiation (compared with the first-best solution) if the transportation cost of consumers is sufficiently high. Under partial commitment, where the regulator is not able to commit prior to location choices, the optimal price induces first-best quality, but horizontal differentiation is inefficiently high
Light transport in cold atoms: the fate of coherent backscattering in the weak localization regime
The recent observation of coherent backscattering (CBS) of light by atoms has
emphasized the key role of the velocity spread and of the quantum internal
structure of the atoms. Firstly, using highly resonant scatterers imposes very
low temperatures of the disordered medium in order to keep the full contrast of
the CBS interference. This criterion is usually achieved with standard laser
cooling techniques. Secondly, a non trivial internal atomic structure leads to
a dramatic decrease of the CBS contrast. Experiments with Rubidium atoms (with
a non trivial internal structure) and with Strontium (with the simplest
possible internal structure) show this behaviour and confirm theoretical
calculations
Black holes as mirrors: quantum information in random subsystems
We study information retrieval from evaporating black holes, assuming that
the internal dynamics of a black hole is unitary and rapidly mixing, and
assuming that the retriever has unlimited control over the emitted Hawking
radiation. If the evaporation of the black hole has already proceeded past the
"half-way" point, where half of the initial entropy has been radiated away,
then additional quantum information deposited in the black hole is revealed in
the Hawking radiation very rapidly. Information deposited prior to the half-way
point remains concealed until the half-way point, and then emerges quickly.
These conclusions hold because typical local quantum circuits are efficient
encoders for quantum error-correcting codes that nearly achieve the capacity of
the quantum erasure channel. Our estimate of a black hole's information
retention time, based on speculative dynamical assumptions, is just barely
compatible with the black hole complementarity hypothesis.Comment: 18 pages, 2 figures. (v2): discussion of decoding complexity
clarifie
Interpolatory methods for model reduction of multi-input/multi-output systems
We develop here a computationally effective approach for producing
high-quality -approximations to large scale linear
dynamical systems having multiple inputs and multiple outputs (MIMO). We extend
an approach for model reduction introduced by Flagg,
Beattie, and Gugercin for the single-input/single-output (SISO) setting, which
combined ideas originating in interpolatory -optimal model
reduction with complex Chebyshev approximation. Retaining this framework, our
approach to the MIMO problem has its principal computational cost dominated by
(sparse) linear solves, and so it can remain an effective strategy in many
large-scale settings. We are able to avoid computationally demanding
norm calculations that are normally required to monitor
progress within each optimization cycle through the use of "data-driven"
rational approximations that are built upon previously computed function
samples. Numerical examples are included that illustrate our approach. We
produce high fidelity reduced models having consistently better
performance than models produced via balanced truncation;
these models often are as good as (and occasionally better than) models
produced using optimal Hankel norm approximation as well. In all cases
considered, the method described here produces reduced models at far lower cost
than is possible with either balanced truncation or optimal Hankel norm
approximation
Recommended from our members
A specialist toxicity database (TRACE) is more effective than its larger, commercially available counterparts
A comparison of the retrieval precision and recall of a specialist bibliographic toxicity database (TRACE) with that of a wide range of commercial on-line databases indicated that the larger size and resources of the commercial databases did not, for a series of test queries, assure superior retrieval of relevant papers. The specialist database, in which document selection and indexing is undertaken by the same (in this case) expert toxicologists who subsequently use the database in their day-to-day work, achieved markedly better retrieval, using simpler search strategies, than the commercial databases. Small specialist databases may offer a valuable alternative to existing commercial databases
An ansatz for the nonlinear Demkov-Kunike problem for cold molecule formation
We study nonlinear mean-field dynamics of ultracold molecule formation in the
case when the external field configuration is defined by the level-crossing
Demkov-Kunike model, characterized by a bell-shaped coupling and finite
variation of the detuning. Analyzing the fast sweep rate regime of the strong
interaction limit, which models a situation when the peak value of the coupling
is large enough and the resonance crossing is sufficiently fast, we construct a
highly accurate ansatz to describe the temporal dynamics of the molecule
formation in the mentioned interaction regime. The absolute error of the
constructed approximation is less than 3*10^-6 for the final transition
probability while at certain time points it might increase up to 10^-3.
Examining the role of the different terms in the constructed approximation, we
prove that in the fast sweep rate regime of the strong interaction limit the
temporal dynamics of the atom-molecule conversion effectively consists of the
process of resonance crossing, which is governed by a nonlinear equation,
followed by atom-molecular coherent oscillations which are basically described
by a solution of the linear problem, associated with the considered nonlinear
one.Comment: Accepted for publication in J. Contemp. Phys. (Armenian National
Academy of Sciences) 8 pages, 4 figure
Modelling of strain effects in manganite films
Thickness dependence and strain effects in films of
perovskites are analyzed in the colossal magnetoresistance regime. The
calculations are based on a generalization of a variational approach previously
proposed for the study of manganite bulk. It is found that a reduction in the
thickness of the film causes a decrease of critical temperature and
magnetization, and an increase of resistivity at low temperatures. The strain
is introduced through the modifications of in-plane and out-of-plane electron
hopping amplitudes due to substrate-induced distortions of the film unit cell.
The strain effects on the transition temperature and transport properties are
in good agreement with experimental data only if the dependence of the hopping
matrix elements on the bond angle is properly taken into account.
Finally variations of the electron-phonon coupling linked to the presence of
strain turn out important in influencing the balance of coexisting phases in
the filmComment: 7 figures. To be published on Physical Review
- …
