166 research outputs found

    Key determinants of target DNA recognition by retroviral intasomes

    Get PDF
    BACKGROUND: Retroviral integration favors weakly conserved palindrome sequences at the sites of viral DNA joining and generates a short (4–6 bp) duplication of host DNA flanking the provirus. We previously determined two key parameters that underlie the target DNA preference for prototype foamy virus (PFV) and human immunodeficiency virus type 1 (HIV-1) integration: flexible pyrimidine (Y)/purine (R) dinucleotide steps at the centers of the integration sites, and base contacts with specific integrase residues, such as Ala188 in PFV integrase and Ser119 in HIV-1 integrase. Here we examined the dinucleotide preference profiles of a range of retroviruses and correlated these findings with respect to length of target site duplication (TSD). RESULTS: Integration datasets covering six viral genera and the three lengths of TSD were accessed from the literature or generated in this work. All viruses exhibited significant enrichments of flexible YR and/or selection against rigid RY dinucleotide steps at the centers of integration sites, and the magnitude of this enrichment inversely correlated with TSD length. The DNA sequence environments of in vivo-generated HIV-1 and PFV sites were consistent with integration into nucleosomes, however, the local sequence preferences were largely independent of target DNA chromatinization. Integration sites derived from cells infected with the gammaretrovirus reticuloendotheliosis virus strain A (Rev-A), which yields a 5 bp TSD, revealed the targeting of global chromatin features most similar to those of Moloney murine leukemia virus, which yields a 4 bp duplication. In vitro assays revealed that Rev-A integrase interacts with and is catalytically stimulated by cellular bromodomain containing 4 protein. CONCLUSIONS: Retroviral integrases have likely evolved to bend target DNA to fit scissile phosphodiester bonds into two active sites for integration, and viruses that cut target DNA with a 6 bp stagger may not need to bend DNA as sharply as viruses that cleave with 4 bp or 5 bp staggers. For PFV and HIV-1, the selection of signature bases and central flexibility at sites of integration is largely independent of chromatin structure. Furthermore, global Rev-A integration is likely directed to chromatin features by bromodomain and extraterminal domain proteins. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12977-015-0167-3) contains supplementary material, which is available to authorized users

    Distribution and Redistribution of HIV-1 Nucleocapsid Protein in Immature, Mature, and Integrase-Inhibited Virions: a Role for Integrase in Maturation

    Get PDF
    During virion maturation, HIV-1 capsid protein assembles into a conical core containing the viral ribonucleoprotein (vRNP) complex, thought to be composed mainly of the viral RNA and nucleocapsid protein (NC). After infection, the viral RNA is reverse transcribed into double-stranded DNA, which is then incorporated into host chromosomes by integrase (IN) catalysis. Certain IN mutations (class II) and antiviral drugs (allosteric IN inhibitors [ALLINIs]) adversely affect maturation, resulting in virions that contain “eccentric condensates,” electron-dense aggregates located outside seemingly empty capsids. Here we demonstrate that in addition to this mislocalization of electron density, a class II IN mutation and ALLINIs each increase the fraction of virions with malformed capsids (from ∼12% to ∼53%). Eccentric condensates have a high NC content, as demonstrated by “tomo-bubblegram” imaging, a novel labeling technique that exploits the susceptibility of NC to radiation damage. Tomo-bubblegrams also localized NC inside wild-type cores and lining the spherical Gag shell in immature virions. We conclude that eccentric condensates represent nonpackaged vRNPs and that either genetic or pharmacological inhibition of IN can impair vRNP incorporation into mature cores. Supplying IN in trans as part of a Vpr-IN fusion protein partially restored the formation of conical cores with internal electron density and the infectivity of a class II IN deletion mutant virus. Moreover, the ability of ALLINIs to induce eccentric condensate formation required both IN and viral RNA. Based on these observations, we propose a role for IN in initiating core morphogenesis and vRNP incorporation into the mature core during HIV-1 maturation

    Structural basis of second-generation HIV integrase inhibitor action and viral resistance

    Get PDF
    Despite worldwide prescription, the mechanistic basis for superiority of second-generation HIV integrase (IN) strand transfer inhibitors (INSTIs) is poorly understood. We use single-particle cryo-electron microscopy to visualize the mode of action of the advanced INSTIs dolutegravir and bictegravir at near atomic resolution. Q148H/G140S amino acid substitutions in IN that pervade clinical INSTI failure perturb optimal magnesium ion coordination in the enzyme active site. The expanded chemical scaffolds of second-generation compounds mediate interactions with the protein backbone, which are critical for antagonizing Q148H/G140S mutant virus. Our results reveal that binding to magnesium ions underpins a fundamental weakness of the INSTI pharmacophore that is exploited by the virus to engender resistance and provide a structural framework for the development of this important class of anti-HIV/AIDS therapeutics

    Alzheimer’s disease genetic risk and cognitive reserve in relationship to long-term cognitive trajectories among cognitively normal individuals

    Get PDF
    Background: Both Alzheimer’s disease (AD) genetic risk factors and indices of cognitive reserve (CR) influence risk of cognitive decline, but it remains unclear whether they interact. This study examined whether a CR index score modifies the relationship between AD genetic risk factors and long-term cognitive trajectories in a large sample of individuals with normal cognition. Methods: Analyses used data from the Preclinical AD Consortium, including harmonized data from 5 longitudinal cohort studies. Participants were cognitively normal at baseline (M baseline age = 64 years, 59% female) and underwent 10 years of follow-up, on average. AD genetic risk was measured by (i) apolipoprotein-E (APOE) genetic status (APOE-ε2 and APOE-ε4 vs. APOE-ε3; N = 1819) and (ii) AD polygenic risk scores (AD-PRS; N = 1175). A CR index was calculated by combining years of education and literacy scores. Longitudinal cognitive performance was measured by harmonized factor scores for global cognition, episodic memory, and executive function. Results: In mixed-effects models, higher CR index scores were associated with better baseline cognitive performance for all cognitive outcomes. APOE-ε4 genotype and AD-PRS that included the APOE region (AD-PRSAPOE) were associated with declines in all cognitive domains, whereas AD-PRS that excluded the APOE region (AD-PRSw/oAPOE) was associated with declines in executive function and global cognition, but not memory. There were significant 3-way CR index score × APOE-ε4 × time interactions for the global (p = 0.04, effect size = 0.16) and memory scores (p = 0.01, effect size = 0.22), indicating the negative effect of APOE-ε4 genotype on global and episodic memory score change was attenuated among individuals with higher CR index scores. In contrast, levels of CR did not attenuate APOE-ε4-related declines in executive function or declines associated with higher AD-PRS. APOE-ε2 genotype was unrelated to cognition. Conclusions: These results suggest that APOE-ε4 and non-APOE-ε4 AD polygenic risk are independently associated with global cognitive and executive function declines among individuals with normal cognition at baseline, but only APOE-ε4 is associated with declines in episodic memory. Importantly, higher levels of CR may mitigate APOE-ε4-related declines in some cognitive domains. Future research is needed to address study limitations, including generalizability due to cohort demographic characteristics

    Формирование имиджа компании как работодателя: аннотация к дипломной работе / Баглай Ольга Мирославовна; Факультет философии и социальных наук; Кафедра социальной коммуникации; научный руководитель: Купчинова Татьяна Владимировна

    Get PDF
    Unlike for other retroviruses, only a few host cell factors that aid the replication of foamy viruses (FVs) via interaction with viral structural components are known. Using a yeast-two-hybrid (Y2H) screen with prototype FV (PFV) Gag protein as bait we identified human polo-like kinase 2 (hPLK2), a member of cell cycle regulatory kinases, as a new interactor of PFV capsids. Further Y2H studies confirmed interaction of PFV Gag with several PLKs of both human and rat origin. A consensus Ser-Thr/Ser-Pro (S-T/S-P) motif in Gag, which is conserved among primate FVs and phosphorylated in PFV virions, was essential for recognition by PLKs. In the case of rat PLK2, functional kinase and polo-box domains were required for interaction with PFV Gag. Fluorescently-tagged PFV Gag, through its chromatin tethering function, selectively relocalized ectopically expressed eGFP-tagged PLK proteins to mitotic chromosomes in a Gag STP motif-dependent manner, confirming a specific and dominant nature of the Gag-PLK interaction in mammalian cells. The functional relevance of the Gag-PLK interaction was examined in the context of replication-competent FVs and single-round PFV vectors. Although STP motif mutated viruses displayed wild type (wt) particle release, RNA packaging and intra-particle reverse transcription, their replication capacity was decreased 3-fold in single-cycle infections, and up to 20-fold in spreading infections over an extended time period. Strikingly similar defects were observed when cells infected with single-round wt Gag PFV vectors were treated with a pan PLK inhibitor. Analysis of entry kinetics of the mutant viruses indicated a post-fusion defect resulting in delayed and reduced integration, which was accompanied with an enhanced preference to integrate into heterochromatin. We conclude that interaction between PFV Gag and cellular PLK proteins is important for early replication steps of PFV within host cells

    Tuning a Polar Molecule for Selective Cytoplasmic Delivery by a pH (Low) Insertion Peptide

    Get PDF
    Drug molecules are typically hydrophobic and small in order to traverse membranes to reach cytoplasmic targets, but we have discovered that more polar molecules can be delivered across membranes using water-soluble, moderately hydrophobic membrane peptides of the pHLIP (pH low insertion peptide) family. Delivery of polar cargo molecules could expand the chemical landscape for pharmacological agents that have useful activity but are too polar by normal drug criteria. The spontaneous insertion and folding of the pHLIP peptide across a lipid bilayer seeks a free energy minimum, and insertion is accompanied by a release of energy that can be used to translocate cell-impermeable cargo molecules. In this study, we report our first attempt to tune the hydrophobicity of a polar cargo, phallacidin, in a systematic manner. We present the design, synthesis, and characterization of three phallacidin cargoes, where the hydrophobicity of the cargo was tuned by the attachment of diamines of various lengths of hydrophobic chains. The phallacidin cargoes were conjugated to pHLIP and shown to selectively inhibit the proliferation of cancer cells in a concentration-dependent manner at low pH

    Different Transcriptional Control of Metabolism and Extracellular Matrix in Visceral and Subcutaneous Fat of Obese and Rimonabant Treated Mice

    Get PDF
    BACKGROUND: The visceral (VAT) and subcutaneous (SCAT) adipose tissues play different roles in physiology and obesity. The molecular mechanisms underlying their expansion in obesity and following body weight reduction are poorly defined. METHODOLOGY: C57Bl/6 mice fed a high fat diet (HFD) for 6 months developed low, medium, or high body weight as compared to normal chow fed mice. Mice from each groups were then treated with the cannabinoid receptor 1 antagonist rimonabant or vehicle for 24 days to normalize their body weight. Transcriptomic data for visceral and subcutaneous adipose tissues from each group of mice were obtained and analyzed to identify: i) genes regulated by HFD irrespective of body weight, ii) genes whose expression correlated with body weight, iii) the biological processes activated in each tissue using gene set enrichment analysis (GSEA), iv) the transcriptional programs affected by rimonabant. PRINCIPAL FINDINGS: In VAT, "metabolic" genes encoding enzymes for lipid and steroid biosynthesis and glucose catabolism were down-regulated irrespective of body weight whereas "structure" genes controlling cell architecture and tissue remodeling had expression levels correlated with body weight. In SCAT, the identified "metabolic" and "structure" genes were mostly different from those identified in VAT and were regulated irrespective of body weight. GSEA indicated active adipogenesis in both tissues but a more prominent involvement of tissue stroma in VAT than in SCAT. Rimonabant treatment normalized most gene expression but further reduced oxidative phosphorylation gene expression in SCAT but not in VAT. CONCLUSION: VAT and SCAT show strikingly different gene expression programs in response to high fat diet and rimonabant treatment. Our results may lead to identification of therapeutic targets acting on specific fat depots to control obesity

    Exploiting evolutionary steering to induce collateral drug sensitivity in cancer

    Get PDF
    Drug resistance mediated by clonal evolution is arguably the biggest problem in cancer therapy today. However, evolving resistance to one drug may come at a cost of decreased fecundity or increased sensitivity to another drug. These evolutionary trade-offs can be exploited using 'evolutionary steering' to control the tumour population and delay resistance. However, recapitulating cancer evolutionary dynamics experimentally remains challenging. Here, we present an approach for evolutionary steering based on a combination of single-cell barcoding, large populations of 108-109 cells grown without re-plating, longitudinal non-destructive monitoring of cancer clones, and mathematical modelling of tumour evolution. We demonstrate evolutionary steering in a lung cancer model, showing that it shifts the clonal composition of the tumour in our favour, leading to collateral sensitivity and proliferative costs. Genomic profiling revealed some of the mechanisms that drive evolved sensitivity. This approach allows modelling evolutionary steering strategies that can potentially control treatment resistance
    corecore