75 research outputs found

    RET Germline Mutations Identified by Exome Sequencing in a Chinese Multiple Endocrine Neoplasia Type 2A/Familial Medullary Thyroid Carcinoma Family

    Get PDF
    BACKGROUND: Whole exome sequencing provides a labor-saving and direct means of genetic diagnosis of hereditary disorders in which the pathogenic gene harbors a large cohort of exons. We set out to demonstrate a suitable example of genetic diagnosis of MEN 2A/FMTC (multiple endocrine neoplasia type 2/familial medullary thyroid carcinoma) using this approach. METHODOLOGY/PRINCIPAL FINDINGS: We sequenced the whole exome of six individuals from a large Chinese MEN2A/FMTC pedigree to identify the variants of the RET (REarranged during Transfection) protooncogene and followed this by validation. Then prophylactic or surgical thyroidectomy with modified or level VI lymph node dissection and adrenalectomy were performed for the carriers. The cases were closely followed up. Massively parallel sequencing revealed four missense mutations of RET. We unexpectedly discovered that the proband's daughter with MEN 2A-related MTC presented a novel p.C634Y/V292M/R67H/R982C compound mutation, due to the involvement of p.C634Y in the proband with MEN 2A and p.V292M/R67H/R982C in the proband's husband with FMTC. In the maternal origin, p.C634Y caused bilateral MTC in all 5 cases and bilateral pheochromocytoma in 2 of the 5; the earliest onset age was 28 years. In the paternal origin, one of the six p.V292M/R67H/R982C carriers presented bilateral MTC (70 years old), one only had bilateral C-cell hyperplasia (44 years), two had bilateral multi-nodules (46 and 48 years) and two showed no abnormality (22 and 19 years). CONCLUSIONS/SIGNIFICANCE: The results confirmed the successful clinical utility of whole exome sequencing, and our data suggested that the p.C634Y/V292M/R67H/R982C mutation of RET exhibited a more aggressive clinical phenotype than p.C634Y or p.V292M/R67H/R982C, while p.V292M/R67H/R982C presented a relatively milder pathogenicity of MTC and likely predisposed to FMTC

    Evolutionarily Conserved Herpesviral Protein Interaction Networks

    Get PDF
    Herpesviruses constitute a family of large DNA viruses widely spread in vertebrates and causing a variety of different diseases. They possess dsDNA genomes ranging from 120 to 240 kbp encoding between 70 to 170 open reading frames. We previously reported the protein interaction networks of two herpesviruses, varicella-zoster virus (VZV) and Kaposi's sarcoma-associated herpesvirus (KSHV). In this study, we systematically tested three additional herpesvirus species, herpes simplex virus 1 (HSV-1), murine cytomegalovirus and Epstein-Barr virus, for protein interactions in order to be able to perform a comparative analysis of all three herpesvirus subfamilies. We identified 735 interactions by genome-wide yeast-two-hybrid screens (Y2H), and, together with the interactomes of VZV and KSHV, included a total of 1,007 intraviral protein interactions in the analysis. Whereas a large number of interactions have not been reported previously, we were able to identify a core set of highly conserved protein interactions, like the interaction between HSV-1 UL33 with the nuclear egress proteins UL31/UL34. Interactions were conserved between orthologous proteins despite generally low sequence similarity, suggesting that function may be more conserved than sequence. By combining interactomes of different species we were able to systematically address the low coverage of the Y2H system and to extract biologically relevant interactions which were not evident from single species

    Study of cosmogenic activation above ground for the DarkSide-20k experiment

    Get PDF
    The activation of materials due to exposure to cosmic rays may become an important background source for experiments investigating rare event phenomena. DarkSide-20k, currently under construction at the Laboratori Nazionali del Gran Sasso, is a direct detection experiment for galactic dark matter particles, using a two-phase liquid-argon Time Projection Chamber (TPC) filled with 49.7 tonnes (active mass) of Underground Argon (UAr) depleted in 39Ar. Despite the outstanding capability of discriminating / background in argon TPCs, this background must be considered because of induced dead time or accidental coincidences mimicking dark-matter signals and it is relevant for low-threshold electron-counting measurements. Here, the cosmogenic activity of relevant long-lived radioisotopes induced in the experiment has been estimated to set requirements and procedures during preparation of the experiment and to check that it is not dominant over primordial radioactivity; particular attention has been paid to the activation of the 120 t of UAr used in DarkSide-20k. Expected exposures above ground and production rates, either measured or calculated, have been considered in detail. From the simulated counting rates in the detector due to cosmogenic isotopes, it is concluded that activation in copper and stainless steel is not problematic. The activity of 39Ar induced during extraction, purification and transport on surface is evaluated to be 2.8% of the activity measured in UAr by DarkSide-50 experiment, which used the same underground source, and thus considered acceptable. Other isotopes in the UAr such as 37Ar and 3H are shown not to be relevant due to short half-life and assumed purification methods

    Sensitivity projections for a dual-phase argon TPC optimized for light dark matter searches through the ionization channel

    Get PDF
    Dark matter lighter than 10  GeV/c2 encompasses a promising range of candidates. A conceptual design for a new detector, DarkSide-LowMass, is presented, based on the DarkSide-50 detector and progress toward DarkSide-20k, optimized for a low-threshold electron-counting measurement. Sensitivity to light dark matter is explored for various potential energy thresholds and background rates. These studies show that DarkSide-LowMass can achieve sensitivity to light dark matter down to the solar neutrino fog for GeV-scale masses and significant sensitivity down to 10  MeV/c2 considering the Migdal effect or interactions with electrons. Requirements for optimizing the detector’s sensitivity are explored, as are potential sensitivity gains from modeling and mitigating spurious electron backgrounds that may dominate the signal at the lowest energies

    Study on cosmogenic activation above ground for the DarkSide-20k project

    Get PDF
    The activation of materials due to the exposure to cosmic rays may become an important background source for experiments investigating rare event phenomena. DarkSide-20k is a direct detection experiment for galactic dark matter particles, using a two-phase liquid argon time projection chamber filled with 49.7 tonnes (active mass) of Underground Argon (UAr) depleted in 39Ar. Here, the cosmogenic activity of relevant long-lived radioisotopes induced in the argon and other massive components of the set-up has been estimated; production of 120 t of radiopure UAr is foreseen. The expected exposure above ground and production rates, either measured or calculated, have been considered. From the simulated counting rates in the detector due to cosmogenic isotopes, it is concluded that activation in copper and stainless steel is not problematic. Activation of titanium, considered in early designs but not used in the final design, is discussed. The activity of 39Ar induced during extraction, purification and transport on surface, in baseline conditions, is evaluated to be 2.8% of the activity measured in UAr from the same source, and thus considered acceptable. Other products in the UAr such as 37Ar and 3H are shown to not be relevant due to short half-life and assumed purification methods

    Directionality of nuclear recoils in a liquid argon time projection chamber

    Full text link
    The direct search for dark matter in the form of weakly interacting massive particles (WIMP) is performed by detecting nuclear recoils (NR) produced in a target material from the WIMP elastic scattering. A promising experimental strategy for direct dark matter search employs argon dual-phase time projection chambers (TPC). One of the advantages of the TPC is the capability to detect both the scintillation and charge signals produced by NRs. Furthermore, the existence of a drift electric field in the TPC breaks the rotational symmetry: the angle between the drift field and the momentum of the recoiling nucleus can potentially affect the charge recombination probability in liquid argon and then the relative balance between the two signal channels. This fact could make the detector sensitive to the directionality of the WIMP-induced signal, enabling unmistakable annual and daily modulation signatures for future searches aiming for discovery. The Recoil Directionality (ReD) experiment was designed to probe for such directional sensitivity. The TPC of ReD was irradiated with neutrons at the INFN Laboratori Nazionali del Sud, and data were taken with 72 keV NRs of known recoil directions. The direction-dependent liquid argon charge recombination model by Cataudella et al. was adopted and a likelihood statistical analysis was performed, which gave no indications of significant dependence of the detector response to the recoil direction. The aspect ratio R of the initial ionization cloud is estimated to be 1.037 +/- 0.027 and the upper limit is R < 1.072 with 90% confidence levelComment: 20 pages, 10 figures, submitted to Eur. Phys. J.

    Sensitivity projections for a dual-phase argon TPC optimized for light dark matter searches through the ionization channel

    Full text link
    Dark matter lighter than 10 GeV/c2^2 encompasses a promising range of candidates. A conceptual design for a new detector, DarkSide-LowMass, is presented, based on the DarkSide-50 detector and progress toward DarkSide-20k, optimized for a low-threshold electron-counting measurement. Sensitivity to light dark matter is explored for various potential energy thresholds and background rates. These studies show that DarkSide-LowMass can achieve sensitivity to light dark matter down to the solar neutrino floor for GeV-scale masses and significant sensitivity down to 10 MeV/c2^2 considering the Migdal effect or interactions with electrons. Requirements for optimizing the detector's sensitivity are explored, as are potential sensitivity gains from modeling and mitigating spurious electron backgrounds that may dominate the signal at the lowest energies

    Auditory event-related potentials

    Get PDF
    Auditory event related potentials are electric potentials (AERP, AEP) and magnetic fields (AEF) generated by the synchronous activity of large neural populations in the brain, which are time-locked to some actual or expected sound event
    corecore