14 research outputs found

    The Forum: Fall 2005

    Get PDF
    Fall 2005 journal of the Honors Program at the University of North Dakota. The issue includes stories, poems, essays and art by undergraduate students.https://commons.und.edu/und-books/1058/thumbnail.jp

    The 2006 NESCent Phyloinformatics Hackathon: A Field Report

    Get PDF
    In December, 2006, a group of 26 software developers from some of the most widely used life science programming toolkits and phylogenetic software projects converged on Durham, North Carolina, for a Phyloinformatics Hackathon, an intense five-day collaborative software coding event sponsored by the National Evolutionary Synthesis Center (NESCent). The goal was to help researchers to integrate multiple phylogenetic software tools into automated workflows. Participants addressed deficiencies in interoperability between programs by implementing “glue code” and improving support for phylogenetic data exchange standards (particularly NEXUS) across the toolkits. The work was guided by use-cases compiled in advance by both developers and users, and the code was documented as it was developed. The resulting software is freely available for both users and developers through incorporation into the distributions of several widely-used open-source toolkits. We explain the motivation for the hackathon, how it was organized, and discuss some of the outcomes and lessons learned. We conclude that hackathons are an effective mode of solving problems in software interoperability and usability, and are underutilized in scientific software development

    Comparative Analysis of Expressed Sequence Tag (EST) Libraries in the Seagrass Zostera marina Subjected to Temperature Stress

    Get PDF
    Global warming is associated with increasing stress and mortality on temperate seagrass beds, in particular during periods of high sea surface temperatures during summer months, adding to existing anthropogenic impacts, such as eutrophication and habitat destruction. We compare several expressed sequence tag (EST) in the ecologically important seagrass Zostera marina (eelgrass) to elucidate the molecular genetic basis of adaptation to environmental extremes. We compared the tentative unigene (TUG) frequencies of libraries derived from leaf and meristematic tissue from a control situation with two experimentally imposed temperature stress conditions and found that TUG composition is markedly different among these conditions (all P < 0.0001). Under heat stress, we find that 63 TUGs are differentially expressed (d.e.) at 25°C compared with lower, no-stress condition temperatures (4°C and 17°C). Approximately one-third of d.e. eelgrass genes were characteristic for the stress response of the terrestrial plant model Arabidopsis thaliana. The changes in gene expression suggest complex photosynthetic adjustments among light-harvesting complexes, reaction center subunits of photosystem I and II, and components of the dark reaction. Heat shock encoding proteins and reactive oxygen scavengers also were identified, but their overall frequency was too low to perform statistical tests. In all conditions, the most abundant transcript (3–15%) was a putative metallothionein gene with unknown function. We also find evidence that heat stress may translate to enhanced infection by protists. A total of 210 TUGs contain one or more microsatellites as potential candidates for gene-linked genetic markers. Data are publicly available in a user-friendly database at http://www.uni-muenster.de/Evolution/ebb/Services/zostera

    The 2006 NESCent Phyloinformatics Hackathon: A Field Report

    Get PDF
    In December, 2006, a group of 26 software developers from some of the most widely used life science programming toolkits and phylogenetic software projects converged on Durham, North Carolina, for a Phyloinformatics Hackathon, an intense five-day collaborative software coding event sponsored by the National Evolutionary Synthesis Center (NESCent). The goal was to help researchers to integrate multiple phylogenetic software tools into automated workflows. Participants addressed deficiencies in interoperability between programs by implementing “glue code” and improving support for phylogenetic data exchange standards (particularly NEXUS) across the toolkits. The work was guided by use-cases compiled in advance by both developers and users, and the code was documented as it was developed. The resulting software is freely available for both users and developers through incorporation into the distributions of several widely-used open-source toolkits. We explain the motivation for the hackathon, how it was organized, and discuss some of the outcomes and lessons learned. We conclude that hackathons are an effective mode of solving problems in software interoperability and usability, and are underutilized in scientific software development

    Detecting Adaptive Trait Introgression Between Iris fulva and I. brevicaulis in Highly Selective Field Conditions

    No full text
    The idea that natural hybridization has served as an important force in evolutionary and adaptive diversification has gained considerable momentum in recent years. By combining genome analyses with a highly selective field experiment, we provide evidence for adaptive trait introgression between two naturally hybridizing Louisiana Iris species, flood-tolerant Iris fulva and dry-adapted I. brevicaulis. We planted reciprocal backcross (BC(1)) hybrids along with pure-species plants into natural settings that, due to a flooding event, favored I. fulva. As expected, I. fulva plants survived at much higher rates than I. brevicaulis plants. Backcross hybrids toward I. fulva (BCIF) also survived at significantly higher rates than the reciprocal backcross toward I. brevicaulis (BCIB). Survivorship of BCIB hybrids was strongly influenced by the presence of a number of introgressed I. fulva alleles located throughout the genome, while survivorship in the reciprocal BCIF hybrids was heavily influenced by two epistatically acting QTL of opposite effects. These results demonstrate the potential for adaptive trait introgression between these two species and may help to explain patterns of genetic variation observed in naturally occurring hybrid zones

    The Genetic Architecture of Reproductive Isolation in Louisiana Irises: Flowering Phenology

    No full text
    Despite the potential importance of divergent reproductive phenologies as a barrier to gene flow, we know less about the genetics of this factor than we do about any other isolating barrier. Here, we report on the genetic architecture of divergent flowering phenologies that result in substantial reproductive isolation between the naturally hybridizing plant species Iris fulva and I. brevicaulis. I. fulva initiates and terminates flowering significantly earlier than I. brevicaulis. We examined line crosses of reciprocal F(1) and backcross (BC(1)) hybrids and determined that flowering time was polygenic in nature. We further defined quantitative trait loci (QTL) that affect the initiation of flowering in each of these species. QTL analyses were performed separately for two different growing seasons in the greenhouse, as well as in two field plots where experimental plants were placed into nature. For BCIF hybrids (BC(1) toward I. fulva), 14 of 17 detected QTL caused flowering to occur later in the season when I. brevicaulis alleles were present, while the remaining 3 caused flowering to occur earlier. In BCIB hybrids (BC(1) toward I. brevicaulis), 11 of 15 detected QTL caused flowering to occur earlier in the season when introgressed I. fulva alleles were present, while the remaining 4 caused flowering to occur later. These ratios are consistent with expectations of selection (as opposed to drift) promoting flowering divergence in the evolutionary history of these species. Furthermore, epistatic interactions among the QTL also reflected the same trends, with the majority of epistatic effects causing later flowering than expected in BCIF hybrids and earlier flowering in BCIB hybrids. Overlapping QTL that influenced flowering time across all four habitat/treatment types were not detected, indicating that increasing the sample size of genotyped plants would likely increase the number of significant QTL found in this study

    Genetic Mapping of Species Boundaries in Louisiana Irises Using IRRE Retrotransposon Display Markers

    No full text
    Genetic mapping studies provide insight into the pattern and extent of genetic incompatibilities affecting hybridization between closely related species. Genetic maps of two species of Louisiana Irises, Iris fulva and I. brevicaulis, were constructed from transposon-based molecular markers segregating in reciprocal backcross (BC(1)) interspecific hybrids and used to investigate genomic patterns of species barriers inhibiting introgression. Linkage mapping analyses indicated very little genetic incompatibility between I. fulva and I. brevicaulis in the form of map regions exhibiting transmission ratio distortion, and this was confirmed using a Bayesian multipoint mapping analysis. These results demonstrate the utility of transposon-based marker systems for genetic mapping studies of wild plant species and indicate that the genomes of I. fulva and I. brevicaulis are highly permeable to gene flow and introgression from one another via backcrossing

    Intimately linked or hardly speaking? The relationship between genotype and environmental gradients in a Louisiana Iris hybrid population

    No full text
    Several models of hybrid zone evolution predict the same spatial patterns of genotypic distribution whether or not structuring is due to environment-dependent or -independent selection. In this study, we tested for evidence of environment-dependent selection in an Iris fulva x Iris brevicaulis hybrid population by examining the distribution of genotypes in relation to environmental gradients. We selected 201 Louisiana Iris plants from within a known hybrid population (80 m x 80 m) and placed them in four different genotypic classes (I. fulva, I. fulva-like hybrid, I. brevicaulis-like hybrid and I. brevicaulis) based on seven species-specific random amplified polymorphic DNA (RAPD) markers and two chloroplast DNA haplotypes. Environmental variables were then measured. These variables included percentage cover by tree canopy, elevation from the high water mark, soil pH and percentage soil organic matter. Each variable was sampled for all 201 plants. Canonical discriminant analysis (CDA) was used to infer the environmental factors most strongly associated with the different genotypic groups. Slight differences in elevation (-0.5 m to +0.4 m) were important for distinguishing habitat distributions described by CDA, even though there were no statistical differences between mean elevations alone. I. brevicaulis occurred in a broad range of habitats, while I. fulva had a narrower distribution. Of all the possible combinations, I. fulva-like hybrids and I. brevicaulis-like hybrids occurred in the most distinct habitat types relative to one another. Each hybrid class was not significantly different from its closest parent with regard to habitat occupied, but was statistically unique from its more distant parental species. Within the hybrid genotypes, most, but not all, RAPD loci were individually correlated with environmental variables. This study suggests that, at a very fine spatial scale, environment-dependent selection contributed to the genetic structuring of this hybrid zone
    corecore