850 research outputs found
Thermodynamics of Multi-Component Fermi Vapors
We study the thermodynamical properties of Fermi vapors confined in a
harmonic external potential. In the case of the ideal Fermi gas, we compare
exact density profiles with their semiclassical approximation in the conditions
of recent experiments. Then, we consider the phase-separation of a
multi-component Fermi vapor. In particular, we analyze the phase-separation as
a function of temperature, number of particles and scattering length. Finally,
we discuss the effect of rotation on the stability and thermodynamics of the
trapped vapors.Comment: 15 pages, 5 figures, to be published in J. Phys. B (Atom. Mol.) as a
Special Issue Articl
Collective excitations of a trapped degenerate Fermi gas
We evaluate the small-amplitude excitations of a spin-polarized vapour of
Fermi atoms confined inside a harmonic trap. The dispersion law
is obtained for the vapour in the
collisional regime inside a spherical trap of frequency , with
the number of radial nodes and the orbital angular momentum. The low-energy
excitations are also treated in the case of an axially symmetric harmonic
confinement. The collisionless regime is discussed with main reference to a
Landau-Boltzmann equation for the Wigner distribution function: this equation
is solved within a variational approach allowing an account for
non-linearities. A comparative discussion of the eigenmodes of oscillation for
confined Fermi and Bose vapours is presented in an Appendix.Comment: 14 pages, no figures, accepted for publication in Eur.Phys.Jour.
Kinetic energy of a trapped Fermi gas interacting with a Bose-Einstein condensate
We study a confined mixture of bosons and fermions in the regime of quantal
degeneracy, with particular attention to the effects of the interactions on the
kinetic energy of the fermionic component. We are able to explore a wide region
of system parameters by identifying two scaling variables which completely
determine its state at low temperature. These are the ratio of the
boson-fermion and boson-boson interaction strengths and the ratio of the radii
of the two clouds. We find that the effect of the interactions can be sizeable
for reasonable choices of the parameters and that its experimental study can be
used to infer the sign of the boson-fermion scattering length. The interplay
between interactions and thermal effects in the fermionic kinetic energy is
also discussed.Comment: REVTEX, 8 pages, 6 figures included. Small corrections to text and
figures, accepted for publication in EPJ
Temperature-dependent density profiles of trapped boson-fermion mixtures
We present a semiclassical three-fluid model for a Bose-condensed mixture of
interacting Bose and Fermi gases confined in harmonic traps at finite
temperature. The model is used to characterize the experimentally relevant
behaviour of the equilibrium density profile of the fermions with varying
composition and temperature across the onset of degeneracy, for coupling
strengths relevant to a mixture of
K and K atoms.Comment: 9 pages, 2 postscript figures, accepted for publication in Eur. Phys.
Jour.
Dynamical instability of a spin spiral in an interacting Fermi gas as a probe of the Stoner transition
We propose an experiment to probe ferromagnetic phenomena in an ultracold
Fermi gas, while alleviating the sensitivity to three-body loss and competing
many-body instabilities. The system is initialized in a small pitch spin
spiral, which becomes unstable in the presence of repulsive interactions. To
linear order the exponentially growing collective modes exhibit critical
slowing down close to the Stoner transition point. Also, to this order, the
dynamics are identical on the paramagnetic and ferromagnetic sides of the
transition. However, we show that scattering off the exponentially growing
modes qualitatively alters the collective mode structure. The critical slowing
down is eliminated and in its place a new unstable branch develops at large
wave vectors. Furthermore, long-wavelength instabilities are quenched on the
paramagnetic side of the transition. We study the experimental observation of
the instabilities, specifically addressing the trapping geometry and how
phase-contrast imaging will reveal the emerging domain structure. These probes
of the dynamical phenomena could allow experiments to detect the transition
point and distinguish between the paramagnetic and ferromagnetic regimes
Space-weighted seismic attenuation mapping of the aseismic source of Campi Flegrei 1983-84 unrest
Peer reviewedPublisher PD
Static Properties of Trapped Bose-Fermi Mixed Condensate of Alkali Atoms
Static properties of a bose-fermi mixture of trapped potassium atoms are
studied in terms of coupled Gross-Pitaevskii and Thomas-Fermi equations for
both repulsive and attractive bose-fermi interatomic potentials. Qualitative
estimates are given for solutions of the coupled equations, and the parameter
regions are obtained analytically for the boson-density profile change and for
the boson/fermion phase separation. Especially, the parameter ratio
is found that discriminates the region of the large boson-profile change. These
estimates are applied for numerical results for the potassium atoms and checked
their consistency. It is suggested that a small fraction of fermions could be
trapped without an external potential for the system with an attractive
boson-fermion interaction.Comment: 8 pages,5 figure
Scalings of domain wall energies in two dimensional Ising spin glasses
We study domain wall energies of two dimensional spin glasses. The scaling of
these energies depends on the model's distribution of quenched random
couplings, falling into three different classes. The first class is associated
with the exponent theta =-0.28, the other two classes have theta = 0, as can be
justified theoretically. In contrast to previous claims, we find that theta=0
does not indicate d=d_l but rather d <= d_l, where d_l is the lower critical
dimension.Comment: Clarifications and extra reference
effect of intrathecal baclofen botulinum toxin type a and a rehabilitation programme on locomotor function after spinal cord injury a case report
Objective: a few studies have reported the use of botulinum toxin injections after spinal cord injury, as this is the gold standard to treat focal spasticity. We report such a case here. Case report: a 38-year-old woman who had become paraplegic and care-dependent secondary to cervico-thoracic intramedullary ependymoma, presented 8 months later with painful lower limb spasticity, which was being treated with oral anti-spastic and benzodiazepine drugs with no therapeutic effect. We treated the patient with intrathecal baclofen to reduce her spasticity and in order to avoid the major side-effects of high dosages of oral baclofen. after motor rehabilitation programmes, which included functional ele
Spin drag in an ultracold Fermi gas on the verge of a ferromagnetic instability
Recent experiments [Jo et al., Science 325, 1521 (2009)] have presented
evidence of ferromagnetic correlations in a two-component ultracold Fermi gas
with strong repulsive interactions. Motivated by these experiments we consider
spin drag, i.e., frictional drag due to scattering of particles with opposite
spin, in such systems. We show that when the ferromagnetic state is approached
from the normal side, the spin drag relaxation rate is strongly enhanced near
the critical point. We also determine the temperature dependence of the spin
diffusion constant. In a trapped gas the spin drag relaxation rate determines
the damping of the spin dipole mode, which therefore provides a precursor
signal of the ferromagnetic phase transition that may be used to experimentally
determine the proximity to the ferromagnetic phase.Comment: 4 pages, 3 fig
- …