842 research outputs found

    Thermodynamics of Multi-Component Fermi Vapors

    Full text link
    We study the thermodynamical properties of Fermi vapors confined in a harmonic external potential. In the case of the ideal Fermi gas, we compare exact density profiles with their semiclassical approximation in the conditions of recent experiments. Then, we consider the phase-separation of a multi-component Fermi vapor. In particular, we analyze the phase-separation as a function of temperature, number of particles and scattering length. Finally, we discuss the effect of rotation on the stability and thermodynamics of the trapped vapors.Comment: 15 pages, 5 figures, to be published in J. Phys. B (Atom. Mol.) as a Special Issue Articl

    Collective excitations of a trapped degenerate Fermi gas

    Full text link
    We evaluate the small-amplitude excitations of a spin-polarized vapour of Fermi atoms confined inside a harmonic trap. The dispersion law ω=ωf[l+4n(n+l+2)/3]1/2\omega=\omega_{f}[l+4n(n+l+2)/3]^{1/2} is obtained for the vapour in the collisional regime inside a spherical trap of frequency ωf\omega_{f}, with nn the number of radial nodes and ll the orbital angular momentum. The low-energy excitations are also treated in the case of an axially symmetric harmonic confinement. The collisionless regime is discussed with main reference to a Landau-Boltzmann equation for the Wigner distribution function: this equation is solved within a variational approach allowing an account for non-linearities. A comparative discussion of the eigenmodes of oscillation for confined Fermi and Bose vapours is presented in an Appendix.Comment: 14 pages, no figures, accepted for publication in Eur.Phys.Jour.

    Kinetic energy of a trapped Fermi gas interacting with a Bose-Einstein condensate

    Full text link
    We study a confined mixture of bosons and fermions in the regime of quantal degeneracy, with particular attention to the effects of the interactions on the kinetic energy of the fermionic component. We are able to explore a wide region of system parameters by identifying two scaling variables which completely determine its state at low temperature. These are the ratio of the boson-fermion and boson-boson interaction strengths and the ratio of the radii of the two clouds. We find that the effect of the interactions can be sizeable for reasonable choices of the parameters and that its experimental study can be used to infer the sign of the boson-fermion scattering length. The interplay between interactions and thermal effects in the fermionic kinetic energy is also discussed.Comment: REVTEX, 8 pages, 6 figures included. Small corrections to text and figures, accepted for publication in EPJ

    Temperature-dependent density profiles of trapped boson-fermion mixtures

    Full text link
    We present a semiclassical three-fluid model for a Bose-condensed mixture of interacting Bose and Fermi gases confined in harmonic traps at finite temperature. The model is used to characterize the experimentally relevant behaviour of the equilibrium density profile of the fermions with varying composition and temperature across the onset of degeneracy, for coupling strengths relevant to a mixture of 39^{39}K and 40^{40}K atoms.Comment: 9 pages, 2 postscript figures, accepted for publication in Eur. Phys. Jour.

    Dynamical instability of a spin spiral in an interacting Fermi gas as a probe of the Stoner transition

    Full text link
    We propose an experiment to probe ferromagnetic phenomena in an ultracold Fermi gas, while alleviating the sensitivity to three-body loss and competing many-body instabilities. The system is initialized in a small pitch spin spiral, which becomes unstable in the presence of repulsive interactions. To linear order the exponentially growing collective modes exhibit critical slowing down close to the Stoner transition point. Also, to this order, the dynamics are identical on the paramagnetic and ferromagnetic sides of the transition. However, we show that scattering off the exponentially growing modes qualitatively alters the collective mode structure. The critical slowing down is eliminated and in its place a new unstable branch develops at large wave vectors. Furthermore, long-wavelength instabilities are quenched on the paramagnetic side of the transition. We study the experimental observation of the instabilities, specifically addressing the trapping geometry and how phase-contrast imaging will reveal the emerging domain structure. These probes of the dynamical phenomena could allow experiments to detect the transition point and distinguish between the paramagnetic and ferromagnetic regimes

    Static Properties of Trapped Bose-Fermi Mixed Condensate of Alkali Atoms

    Full text link
    Static properties of a bose-fermi mixture of trapped potassium atoms are studied in terms of coupled Gross-Pitaevskii and Thomas-Fermi equations for both repulsive and attractive bose-fermi interatomic potentials. Qualitative estimates are given for solutions of the coupled equations, and the parameter regions are obtained analytically for the boson-density profile change and for the boson/fermion phase separation. Especially, the parameter ratio RintR_{int} is found that discriminates the region of the large boson-profile change. These estimates are applied for numerical results for the potassium atoms and checked their consistency. It is suggested that a small fraction of fermions could be trapped without an external potential for the system with an attractive boson-fermion interaction.Comment: 8 pages,5 figure

    Scalings of domain wall energies in two dimensional Ising spin glasses

    Full text link
    We study domain wall energies of two dimensional spin glasses. The scaling of these energies depends on the model's distribution of quenched random couplings, falling into three different classes. The first class is associated with the exponent theta =-0.28, the other two classes have theta = 0, as can be justified theoretically. In contrast to previous claims, we find that theta=0 does not indicate d=d_l but rather d <= d_l, where d_l is the lower critical dimension.Comment: Clarifications and extra reference

    effect of intrathecal baclofen botulinum toxin type a and a rehabilitation programme on locomotor function after spinal cord injury a case report

    Get PDF
    Objective: a few studies have reported the use of botulinum toxin injections after spinal cord injury, as this is the gold standard to treat focal spasticity. We report such a case here. Case report: a 38-year-old woman who had become paraplegic and care-dependent secondary to cervico-thoracic intramedullary ependymoma, presented 8 months later with painful lower limb spasticity, which was being treated with oral anti-spastic and benzodiazepine drugs with no therapeutic effect. We treated the patient with intrathecal baclofen to reduce her spasticity and in order to avoid the major side-effects of high dosages of oral baclofen. after motor rehabilitation programmes, which included functional ele

    Spin drag in an ultracold Fermi gas on the verge of a ferromagnetic instability

    Get PDF
    Recent experiments [Jo et al., Science 325, 1521 (2009)] have presented evidence of ferromagnetic correlations in a two-component ultracold Fermi gas with strong repulsive interactions. Motivated by these experiments we consider spin drag, i.e., frictional drag due to scattering of particles with opposite spin, in such systems. We show that when the ferromagnetic state is approached from the normal side, the spin drag relaxation rate is strongly enhanced near the critical point. We also determine the temperature dependence of the spin diffusion constant. In a trapped gas the spin drag relaxation rate determines the damping of the spin dipole mode, which therefore provides a precursor signal of the ferromagnetic phase transition that may be used to experimentally determine the proximity to the ferromagnetic phase.Comment: 4 pages, 3 fig
    corecore