84 research outputs found
Amyloid-Related memory decline in preclinical Alzheimer’s Disease is dependent on APOE ε4 and is detectable over 18-Months
High levels of β-amyloid (Aβ) in the brain and carriage of the APOE ε4 allele have each been linked to cognitive impairment in cognitively normal (CN) older adults. However, the relationship between these two biomarkers and cognitive decline is unclear. The aim of this study was to investigate the relationship between cerebral Aβ level, APOE ε4 carrier status, and cognitive decline over 18 months, in 317 cognitively healthy (CN) older adults (47.6% males, 52.4% females) aged between 60 and 89 years (Mean = 69.9, SD = 6.8). Cognition was assessed using the Cogstate Brief Battery (CBB) and the California Verbal Learning Test, Second Edition (CVLT-II). Planned comparisons indicated that CN older adults with high Aβ who were also APOE ε4 carriers demonstrated the most pronounced decline in learning and working memory. In CN older adults who were APOE ε4 non-carriers, high Aβ was unrelated to cognitive decline in learning and working memory. Carriage of APOE ε4 in CN older adults with low Aβ was associated with a significantly increased rate of decline in learning and unexpectedly, improved cognitive performance on measures of verbal episodic memory over 18 months. These results suggest that Aβ and APOE ε4 interact to increase the rate of cognitive decline in CN older adults and provide further support for the use of Aβ and APOE ε4 as biomarkers of early Alzheimer’s disease
Follow-up plasma apolipoprotein E levels in the Australian Imaging, Biomarkers and Lifestyle Flagship Study of Ageing (AIBL) cohort
Introduction: Alzheimer's disease (AD) is a growing socioeconomic problem worldwide. Early diagnosis and prevention of this devastating disease have become a research priority. Consequently, the identification of clinically significant and sensitive blood biomarkers for its early detection is very important. Apolipoprotein E (APOE) is a well-known and established genetic risk factor for late-onset AD; however, the impact of the protein level on AD risk is unclear. We assessed the utility of plasma ApoE protein as a potential biomarker of AD in the large, well-characterised Australian Imaging, Biomarkers and Lifestyle Study of Ageing (AIBL) cohort.
Methods: Total plasma ApoE levels were measured at 18-month follow-up using a commercial bead-based enzyme-linked immunosorbent assay: the Luminex xMAP human apolipoprotein kit. ApoE levels were then analysed between clinical classifications (healthy controls, mild cognitive impairment (MCI) and AD) and correlated with the data available from the AIBL cohort, including but not limited to APOE genotype and cerebral amyloid burden.
Results: A significant decrease in ApoE levels was found in the AD group compared with the healthy controls. These results validate previously published ApoE protein levels at baseline obtained using different methodology. ApoE protein levels were also significantly affected, depending on APOE genotypes, with ε2/ε2 having the highest protein levels and ε4/ε4 having the lowest. Plasma ApoE levels were significantly negatively correlated with cerebral amyloid burden as measured by neuroimaging.
Conclusions: ApoE is decreased in individuals with AD compared with healthy controls at 18-month follow-up, and this trend is consistent with our results published at baseline. The influence of APOE genotype and sex on the protein levels are also explored. It is clear that ApoE is a strong player in the aetiology of this disease at both the protein and genetic levels
Plasma Aβ42/40 ratio, p‐tau181, GFAP, and NfL across the Alzheimer's disease continuum: A cross‐sectional and longitudinal study in the AIBL cohort
Introduction
Plasma amyloid beta (Aβ)1-42/Aβ1-40 ratio, phosphorylated-tau181 (p-tau181), glial fibrillary acidic protein (GFAP), and neurofilament light (NfL) are putative blood biomarkers for Alzheimer's disease (AD). However, head-to-head cross-sectional and longitudinal comparisons of the aforementioned biomarkers across the AD continuum are lacking.
Methods
Plasma Aβ1-42, Aβ1-40, p-tau181, GFAP, and NfL were measured utilizing the Single Molecule Array (Simoa) platform and compared cross-sectionally across the AD continuum, wherein Aβ-PET (positron emission tomography)–negative cognitively unimpaired (CU Aβ−, n = 81) and mild cognitive impairment (MCI Aβ−, n = 26) participants were compared with Aβ-PET–positive participants across the AD continuum (CU Aβ+, n = 39; MCI Aβ+, n = 33; AD Aβ+, n = 46) from the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL) cohort. Longitudinal plasma biomarker changes were also assessed in MCI (n = 27) and AD (n = 29) participants compared with CU (n = 120) participants. In addition, associations between baseline plasma biomarker levels and prospective cognitive decline and Aβ-PET load were assessed over a 7 to 10-year duration.
Results
Lower plasma Aβ1-42/Aβ1-40 ratio and elevated p-tau181 and GFAP were observed in CU Aβ+, MCI Aβ+, and AD Aβ+, whereas elevated plasma NfL was observed in MCI Aβ+ and AD Aβ+, compared with CU Aβ− and MCI Aβ−. Among the aforementioned plasma biomarkers, for models with and without AD risk factors (age, sex, and apolipoprotein E (APOE) ε4 carrier status), p-tau181 performed equivalent to or better than other biomarkers in predicting a brain Aβ−/+ status across the AD continuum. However, for models with and without the AD risk factors, a biomarker panel of Aβ1-42/Aβ1-40, p-tau181, and GFAP performed equivalent to or better than any of the biomarkers alone in predicting brain Aβ−/+ status across the AD continuum. Longitudinally, plasma Aβ1-42/Aβ1-40, p-tau181, and GFAP were altered in MCI compared with CU, and plasma GFAP and NfL were altered in AD compared with CU. In addition, lower plasma Aβ1-42/Aβ1-40 and higher p-tau181, GFAP, and NfL were associated with prospective cognitive decline and lower plasma Aβ1-42/Aβ1-40, and higher p-tau181 and GFAP were associated with increased Aβ-PET load prospectively.
Discussion
These findings suggest that plasma biomarkers are altered cross-sectionally and longitudinally, along the AD continuum, and are prospectively associated with cognitive decline and brain Aβ-PET load. In addition, although p-tau181 performed equivalent to or better than other biomarkers in predicting an Aβ−/+ status across the AD continuum, a panel of biomarkers may have superior Aβ−/+ status predictive capability across the AD continuum
Plasma high‐density lipoprotein cargo is altered in Alzheimer's disease and is associated with regional brain volume
Cholesterol levels have been repeatedly linked to Alzheimer's Disease (AD), suggesting that high levels could be detrimental, but this effect is likely attributed to Low-Density Lipoprotein (LDL) cholesterol. On the other hand, High-Density Lipoproteins (HDL) cholesterol levels have been associated with reduced brain amyloidosis and improved cognitive function. However, recent findings have suggested that HDL-functionality, which depends upon the HDL-cargo proteins associated with HDL, rather than HDL levels, appears to be the key factor, suggesting a quality over quantity status. In this report, we have assessed the HDL-cargo (Cholesterol, ApoA-I, ApoA-II, ApoC-I, ApoC-III, ApoD, ApoE, ApoH, ApoJ, CRP, and SAA) in stable healthy control (HC), healthy controls who will convert to MCI/AD (HC-Conv) and AD patients (AD). Compared to HC we observed an increased cholesterol/ApoA-I ratio in AD and HC-Conv, as well as an increased ApoD/ApoA-I ratio and a decreased ApoA-II/ApoA-I ratio in AD. Higher cholesterol/ApoA-I ratio was also associated with lower cortical grey matter volume and higher ventricular volume, while higher ApoA-II/ApoA-I and ApoJ/ApoA-I ratios were associated with greater cortical grey matter volume (and for ApoA-II also with greater hippocampal volume) and smaller ventricular volume. Additionally, in a clinical status-independent manner, the ApoE/ApoA-I ratio was significantly lower in APOE ε4 carriers and lowest in APOE ε4 homozygous. Together, these data indicate that in AD patients the composition of HDL is altered, which may affect HDL functionality, and such changes are associated with altered regional brain volumetric data
The association between Alzheimer's Disease-Related markers and physical activity in cognitively normal older adults
Previous studies have indicated that physical activity may be beneficial in reducing the risk for Alzheimer's disease (AD), although the underlying mechanisms are not fully understood. The goal of this study was to evaluate the relationship between habitual physical activity levels and brain amyloid deposition and AD-related blood biomarkers (i.e., measured using a novel high-performance mass spectrometry-based assay), in apolipoprotein E (APOE) ε4 carriers and noncarriers. We evaluated 143 cognitively normal older adults, all of whom had brain amyloid deposition assessed using positron emission tomography and had their physical activity levels measured using the International Physical Activity Questionnaire (IPAQ). We observed an inverse correlation between brain amyloidosis and plasma beta-amyloid (Aβ)1−42 but found no association between brain amyloid and plasma Aβ1−40 and amyloid precursor protein (APP)669−711. Additionally, higher levels of physical activity were associated with lower plasma Aβ1−40, Aβ1−42, and APP669−711 levels in APOE ε4 noncarriers. The ratios of Aβ1−40/Aβ1−42 and APP669−711/Aβ1−42, which have been associated with higher brain amyloidosis in previous studies, differed between APOE ε4 carriers and non-carriers. Taken together, these data indicate a complex relationship between physical activity and brain amyloid deposition and potential blood-based AD biomarkers in cognitively normal older adults. In addition, the role of APOE ε4 is still unclear, and more studies are necessary to bring further clarification
Alzheimer’s disease cerebrospinal fluid biomarkers are not influenced by gravity drip or aspiration extraction methodology
Introduction: Cerebrospinal fluid (CSF) biomarkers, although of established utility in the diagnostic evaluation of Alzheimer's disease (AD), are known to be sensitive to variation based on pre-analytical sample processing. We assessed whether gravity droplet collection versus syringe aspiration was another factor influencing CSF biomarker analyte concentrations and reproducibility.
Methods: Standardized lumbar puncture using small calibre atraumatic spinal needles and CSF collection using gravity fed collection followed by syringe aspirated extraction was performed in a sample of elderly individuals participating in a large long-term observational research trial. Analyte assay concentrations were compared.
Results: For the 44 total paired samples of gravity collection and aspiration, reproducibility was high for biomarker CSF analyte assay concentrations (concordance correlation [95%CI]: beta-amyloid1-42 (Aβ42) 0.83 [0.71 - 0.90]), t-tau 0.99 [0.98 - 0.99], and phosphorylated tau (p-tau) 0.82 [95 % CI 0.71 - 0.89]) and Bonferroni corrected paired sample t-tests showed no significant differences (group means (SD): Aβ42 366.5 (86.8) vs 354.3 (82.6), p = 0.10; t-tau 83.9 (46.6) vs 84.7 (47.4) p = 0.49; p-tau 43.5 (22.8) vs 40.0 (17.7), p = 0.05). The mean duration of collection was 10.9 minutes for gravity collection and <1 minute for aspiration.
Conclusions: Our results demonstrate that aspiration of CSF is comparable to gravity droplet collection for AD biomarker analyses but could considerably accelerate throughput and improve the procedural tolerability for assessment of CSF biomarkers
Interactions between arbuscular mycorrhizal fungi and intraspecific competition affect size and size inequality of Plantago lanceolata L.
Intraspecific competition causes decreases in plant size and increases in size inequality. Arbuscular mycorrhizas usually increase the size and inequality of non-competing plants, but mycorrhizal effects often disappear when plants begin competing. We hypothesized that mycorrhizal effects on size inequality would be determined by the experimental conditions, and conducted simultaneous field and glasshouse experiments to investigate how AM fungi and intraspecific competition determine size inequality in Plantago lanceolata.
2 As predicted, plant size was reduced when plants were competing, in both field and controlled conditions. However, size inequality was unexpectedly reduced by competition. Plants may have competed in a symmetric fashion, probably for nutrients, rather than the more common situation, in which plant competition is strongly asymmetric.
3 Mycorrhizas had no effect on plant size or size inequality in competing plants in either field or controlled conditions, possibly because competition for nutrients was intense and negated any benefit the fungi could provide.
4 The effects of mycorrhizas on non-competing plants were also unexpected. In field-grown plants, AM fungi increased plant size, but decreased size inequality: mycorrhizal plants were more even in size, with few very small individuals. In glasshouse conditions, mycorrhizal colonization was extremely high, and was generally antagonistic, causing a reduction in plant size. Here, however, mycorrhizas caused an increase in size inequality, supporting our original hypothesis. This was because most plants were heavily colonized and small, but a few had low levels of colonization and grew relatively large.
5 This study has important implications for understanding the forces that structure plant communities. AM fungi can have a variety of effects on size inequality and thus potentially important influences on long-term plant population dynamics, by affecting the genetic contribution of individuals to the next generation. However, these effects differ, depending on whether plants are competing or not, the degree of mycorrhizal colonization and the responsiveness of the plant to different colonization densities
Comprehensive analysis of epigenetic clocks reveals associations between disproportionate biological ageing and hippocampal volume
The concept of age acceleration, the difference between biological age and chronological age, is of growing interest, particularly with respect to age-related disorders, such as Alzheimer’s Disease (AD). Whilst studies have reported associations with AD risk and related phenotypes, there remains a lack of consensus on these associations. Here we aimed to comprehensively investigate the relationship between five recognised measures of age acceleration, based on DNA methylation patterns (DNAm age), and cross-sectional and longitudinal cognition and AD-related neuroimaging phenotypes (volumetric MRI and Amyloid-β PET) in the Australian Imaging, Biomarkers and Lifestyle (AIBL) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Significant associations were observed between age acceleration using the Hannum epigenetic clock and cross-sectional hippocampal volume in AIBL and replicated in ADNI. In AIBL, several other findings were observed cross-sectionally, including a significant association between hippocampal volume and the Hannum and Phenoage epigenetic clocks. Further, significant associations were also observed between hippocampal volume and the Zhang and Phenoage epigenetic clocks within Amyloid-β positive individuals. However, these were not validated within the ADNI cohort. No associations between age acceleration and other Alzheimer’s disease-related phenotypes, including measures of cognition or brain Amyloid-β burden, were observed, and there was no association with longitudinal change in any phenotype. This study presents a link between age acceleration, as determined using DNA methylation, and hippocampal volume that was statistically significant across two highly characterised cohorts. The results presented in this study contribute to a growing literature that supports the role of epigenetic modifications in ageing and AD-related phenotypes
Physical Processes in Star Formation
© 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00693-8.Star formation is a complex multi-scale phenomenon that is of significant importance for astrophysics in general. Stars and star formation are key pillars in observational astronomy from local star forming regions in the Milky Way up to high-redshift galaxies. From a theoretical perspective, star formation and feedback processes (radiation, winds, and supernovae) play a pivotal role in advancing our understanding of the physical processes at work, both individually and of their interactions. In this review we will give an overview of the main processes that are important for the understanding of star formation. We start with an observationally motivated view on star formation from a global perspective and outline the general paradigm of the life-cycle of molecular clouds, in which star formation is the key process to close the cycle. After that we focus on the thermal and chemical aspects in star forming regions, discuss turbulence and magnetic fields as well as gravitational forces. Finally, we review the most important stellar feedback mechanisms.Peer reviewedFinal Accepted Versio
- …