10 research outputs found

    A Modern, Guano-Related Occurrence of Foggite, CaAl(PO\u3csub\u3e4\u3c/sub\u3e)(OH)\u3csub\u3e2\u3c/sub\u3e·H\u3csub\u3e2\u3c/sub\u3eO and Churchite-(Y), YPO\u3csub\u3e4\u3c/sub\u3e·2H\u3csub\u3e2\u3c/sub\u3eO in Cioclovina Cave, Romania

    No full text
    This study reports foggite and churchite-(Y) from two spatially separate locations in the guano-related phosphate deposit from the Cioclovina Cave, Romania. Optical microscope observations, powder X-ray diffraction, electron microprobe analyses, and FTIR were used in the analysis of the two minerals. The chemical composition of foggite was determined to be Ca0.925(Al0.91Fe2+ 0.016)Σ0.926(P0.991Si0.043)Σ1.034O3.74(OH)2.26 · H2O and churchite-(Y) [(Y0.830Dy0.043Er0.033Gd0.029Yb0.022)Σ0.957Ca0.009]P1.023O4.00 · 2H2O. Chemical analyses of Cioclovina churchite-(Y) clearly revealed enrichment in lanthanides of even atomic number. The refined unit-cell parameters are for foggite (orthorhombic) a = 9.264(1) Å, b = 21.334(8) Å, c = 5.197(7) Å, and V = 1027.13(8) Å3 (Z = 8); for churchite-(Y) (monoclinic): a = 5.578(8) Å, b = 15.013(6) Å, c = 6.277(8) Å, β = 117.94(4)°, and V = 464.38(5) Å3 (Z = 4). FTIR spectrum of churchite-(Y) exhibits all the bands assigned to the vibrations of PO4, OH, and water groups. Unlike other documented occurrences of foggite and churchite-(Y), in Cioclovina Cave, the occurrence of these minerals are related to a process that phosphatized subjacent limestone and various cave sediments (sand, clay, and limy mud) to form a complex phosphate assemblage. The minerals are presumably derived from phosphate-rich solutions that reacted with clay earth while moving downward through the sediments. Foggite was formed at the expense of the originally precipitated crandallite. Locally concentrated yttrium, REE, and dissolved phosphate are probably responsible for the precipitation of churchite-(Y)

    The Costs of Evaluating Species Densities and Composition of Snakes to Assess Development Impacts in Amazonia

    Get PDF
    Studies leading to decision-making for environmental licensing often fail to provide accurate estimates of diversity. Measures of snake diversity are regularly obtained to assess development impacts in the rainforests of the Amazon Basin, but this taxonomic group may be subject to poor detection probabilities. Recently, the Brazilian government tried to standardize sampling designs by the implementation of a system (RAPELD) to quantify biological diversity using spatially-standardized sampling units. Consistency in sampling design allows the detection probabilities to be compared among taxa, and sampling effort and associated cost to be evaluated. The cost effectiveness of detecting snakes has received no attention in Amazonia. Here we tested the effects of reducing sampling effort on estimates of species densities and assemblage composition. We identified snakes in seven plot systems, each standardised with 14 plots. The 250 m long centre line of each plot followed an altitudinal contour. Surveys were repeated four times in each plot and detection probabilities were estimated for the 41 species encountered. Reducing the number of observations, or the size of the sampling modules, caused significant loss of information on species densities and local patterns of variation in assemblage composition. We estimated the cost to find a snake as $ 120 U.S., but general linear models indicated the possibility of identifying differences in assemblage composition for half the overall survey costs. Decisions to reduce sampling effort depend on the importance of lost information to target-issues, and may not be the preferred option if there is the potential for identifying individual snake species requiring specific conservation actions. However, in most studies of human disturbance on species assemblages, it is likely to be more cost-effective to focus on other groups of organisms with higher detection probabilities.9 page(s

    A Classification of Major Naturally-Occurring Amazonian Lowland Wetlands

    No full text
    Our estimates indicate that about 30% of the seven million square kilometers that make up the Amazon basin comply with international criteria for wetland definition. Most countries sharing the Amazon basin have signed the Ramsar Convention on Wetlands of International Importance but still lack complete wetland inventories, classification systems, and management plans. Amazonian wetlands vary considerably with respect to hydrology, water and soil fertility, vegetation cover, diversity of plant and animal species, and primary and secondary productivity. They also play important roles in the hydrology and biogeochemical cycles of the basin. Here, we propose a classification system for large Amazonian wetland types based on climatic, hydrological, hydrochemical, and botanical parameters. The classification scheme divides natural wetlands into one group with rather stable water levels and another with oscillating water levels. These groups are subdivided into 14 major wetland types. The types are characterized and their distributions and extents are mapped. © Society of Wetland Scientists 2011
    corecore