1,043 research outputs found

    Using Electron Scattering Superscaling to predict Charge-changing Neutrino Cross Sections in Nuclei

    Get PDF
    Superscaling analyses of few-GeV inclusive electron scattering from nuclei are extended to include not only quasielastic processes, but now also into the region where Δ\Delta-excitation dominates. It is shown that, with reasonable assumptions about the basic nuclear scaling function extracted from data and information from other studies of the relative roles played by correlation and MEC effects, the residual strength in the resonance region can be accounted for through an extended scaling analysis. One observes scaling upon assuming that the elementary cross section by which one divides the residual to obtain a new scaling function is dominated by the N→ΔN\to\Delta transition and employing a new scaling variable which is suited to the resonance region. This yields a good representation of the electromagnetic response in both the quasielastic and Δ\Delta regions. The scaling approach is then inverted and predictions are made for charge-changing neutrino reactions at energies of a few GeV, with focus placed on nuclei which are relevant for neutrino oscillation measurements. For this a relativistic treatment of the required weak interaction vector and axial-vector currents for both quasielastic and Δ\Delta-excitation processes is presented.Comment: 42 pages, 9 figures, accepted for publication in Physical Review

    Relativistic effects in two-particle emission for electron and neutrino reactions

    Get PDF
    Two-particle two-hole contributions to electroweak response functions are computed in a fully relativistic Fermi gas, assuming that the electroweak current matrix elements are independent of the kinematics. We analyze the genuine kinematical and relativistic effects before including a realistic meson-exchange current (MEC) operator. This allows one to study the mathematical properties of the non-trivial seven-dimensional integrals appearing in the calculation and to design an optimal numerical procedure to reduce the computation time. This is required for practical applications to CC neutrino scattering experiments, where an additional integral over the neutrino flux is performed. Finally we examine the viability of this model to compute the electroweak 2p-2h response functions.Comment: Major revision (shortened). 22 pages, 18 figure

    2p-2h excitations in neutrino scattering: angular distribution and frozen approximation

    Full text link
    We study the phase-space dependence of 2p-2h excitations in neutrino scattering using the relativistic Fermi gas model. We follow a similar approach to other authors, but focusing in the phase-space properties, comparing with the non-relativistic model. A careful mathematical analysis of the angular distribution function for the outgoing nucleons is performed. Our goals are to optimize the CPU time of the 7D integral to compute the hadron tensor in neutrino scattering, and to conciliate the different relativistic and non relativistic models by describing general properties independently of the two-body current. For some emission angles the angular distribution becomes infinite in the Lab system, and we derive a method to integrate analytically around the divergence. Our results show that the frozen approximation, obtained by neglecting the momenta of the two initial nucleons inside the integral of the hadron tensor, reproduces fairly the exact response functions for constant current matrix elements.Comment: 8 pages, 4 figures. Contribution to 16th International Workshop on Neutrino Factories and Future Neutrino Beam Facilities, 25-30 August, 2014. Held at University of Glasgow, United Kingdo

    The frozen nucleon approximation in two-particle two-hole response functions

    Get PDF
    We present a fast and efficient method to compute the inclusive two-particle two-hole (2p-2h) electroweak responses in the neutrino and electron quasielastic inclusive cross sections. The method is based on two approximations. The first neglects the motion of the two initial nucleons below the Fermi momentum, which are considered to be at rest. This approximation, which is reasonable for high values of the momentum transfer, turns out also to be quite good for moderate values of the momentum transfer q≳kFq\gtrsim k_F. The second approximation involves using in the "frozen" meson-exchange currents (MEC) an effective Δ\Delta-propagator averaged over the Fermi sea. Within the resulting "frozen nucleon approximation", the inclusive 2p-2h responses are accurately calculated with only a one-dimensional integral over the emission angle of one of the final nucleons, thus drastically simplifying the calculation and reducing the computational time. The latter makes this method especially well-suited for implementation in Monte Carlo neutrino event generators.Comment: 8 pages, 5 figures and 1 tabl

    Two-nucleon emission in neutrino and electron scattering from nuclei: the modified convolution approximation

    Full text link
    The theoretical formalism of inclusive lepton-nucleus scattering in the two-nucleon emission channel is discussed in the context of a simplified approach, the modified convolution approximation. This allows one to write the 2p2h responses of the relativistic Fermi gas as a folding integral of two 1p1h responses with the energies and momenta transferred to each nucleon. The idea behind this method is to introduce different average momenta for the two initial nucleons in the matrix elements of the two-body current, with the innovation that they depend on the transferred energies and momenta. This method treats exactly the two-body phase space kinematics, and reduces the formulae of the response functions from seven-dimensional integrals over momenta to much simpler three-dimensional ones. The applicability of the method is checked by comparing with the full results within a model of electroweak meson-exchange currents. The predictions are accurate enough, especially in the low-energy threshold region where the average momentum approximation works the best.Comment: 35 pages, 13 figure

    Nuclear dependence of the 2p2h electroweak response in the Relativistic Fermi Gas model

    Get PDF
    We present the results of a recent study of meson-exchange two-body currents in lepton-nucleus inclusive scattering at various kinematics and for different nuclei within the Relativistic Fermi Gas model. We show that the associated nuclear response functions at their peaks scale as AkF2A k_F^2, for Fermi momentum kFk_F going from 200 to 300 MeV/c and momentum transfer qq from 2kF2k_F to 2 GeV/c. This behavior is different from what is found for the quasielastic response, which scales as A/kFA/k_F. This result can be valuable in the analyses of long-baseline neutrino oscillation experiments, which need to implement these nuclear effects in Monte Carlo simulations for different kinematics and nuclear targets.Comment: 11 pages, 6 figures, Proccedings of the Workshop "Advanced Aspects in Nuclear Structure and Reactions at Different Energy Scales", 25-28 April 2017, Arbanasi, Bulgari

    Emission of neutron-proton and proton-proton pairs in electron scattering induced by meson-exchange currents

    Get PDF
    We use a relativistic model of meson-exchange currents to compute the proton-neutron and proton-proton yields in (e,e′)(e,e') scattering from 12^{12}C in the 2p-2h channel. We compute the response functions and cross section with the relativistic Fermi gas model for a range of kinematics from intermediate to high momentum transfers. We find a large contribution of neutron-proton configurations in the initial state, as compared to proton-proton pairs. The different emission probabilities of distinct species of nucleon pairs are produced in our model only by meson-exchange currents, mainly by the Δ\Delta isobar current. We also analyze the effect of the exchange contribution and show that the direct/exchange interference strongly affects the determination of the np/pp ratio.Comment: 5 pages, 6 figure

    Development and validation of the facilitative interpersonal skills scale for clients

    Get PDF
    Objective: Psychotherapy studies have revealed that therapist characteristics are responsible for 5% to 9% of outcome variance. The therapist-facilitative interpersonal skills (FIS) have been shown to predict both alliance and outcomes, indicating that higher FIS therapists are more effective than lower FIS therapists. The current study focused on the development and validation of the FIS-client version (FIS-C) instrument, aimed at collecting the clients' perspectives on relevant therapist characteristics. Method: The clinical outcomes in routine evaluation—outcome measures, the session rating scale, and the FIS questionnaire—client version were filled out by psychotherapy clients. Exploratory, confirmatory factor, and test–retest analysis were conducted. Results: Results indicate robust psychometric characteristics, in terms of validity (factorial, convergent, discriminant, and nomological), reliability, and sensitivity. Conclusion: The validation of the FIS-C represents an important contribution to clinical research and practice, namely to the field of client feedback and therapist expertise.info:eu-repo/semantics/publishedVersio

    Density dependence of 2p-2h meson-exchange currents

    Get PDF
    We analyze the density dependence of the contribution of meson-exchange currents to the lepton-nucleus inclusive cross section in the two-particle two-hole channel. The model is based on the Relativistic Fermi Gas, where each nucleus is characterized by its Fermi momentum kFk_F. We find that the 2p-2h nuclear response functions at their peaks scale as AkF2A k_F^2 for Fermi momentum going from 200 to 300 MeV/c and momentum transfer qq from 2kF2k_F to 2 GeV/c. This behavior is different from what is found for the quasielastic response, which scales as A/kFA/k_F. Additionally, the deep scaling region is also discussed and there the usual scaling behavior is found to be preferable.Comment: 9 pages, 8 figure

    Effects of Short-Range Correlations in (e,e'p) reactions and nuclear overlap functions

    Full text link
    A study of the effects of short-range correlations over the (e,e'p) reaction for low missing energy in closed shell nuclei is presented. We use correlated, quasi-hole overlap functions extracted from the asymptotic behavior of the one-body density matrix, containing central correlations of Jastrow type, up to first-order in a cluster expansion, and computed in the very high asymptotic region, up to 100 fm. The method to extract the overlap functions is checked in a simple shell model, where the exact results are known. We find that the single-particle wave functions of the valence shells are shifted to the right due to the short-range repulsion by the nuclear core. The corresponding spectroscopic factors are reduced only a few percent with respect to the shell model. However, the (e,e'p) response functions and cross sections are enhanced in the region of the maximum of the missing momentum distribution due to short-range correlations.Comment: 45 pages, 15 figure
    • …
    corecore