917 research outputs found
Conjunction search is relational: Behavioral and electrophysiological evidence
Attention selects behaviorally relevant stimuli for further capacity-limited processing and gates their access to awareness. Given the importance of attention for conscious perception, it is important to determine the factors and mechanisms that drive attention. A widespread view is that attention is biased to the specific feature values of a conjunction target (e.g., vertical, red, medium). By contrast, the results of the present study show that attention is tuned to the 2 relative features that distinguish a conjunction target from the irrelevant nontargets (e.g., larger and bluer). Moreover, an irrelevant conjunction cue that is briefly presented prior to the target can automatically attract attention, even in the absence of any feature contrasts. Importantly, automatic orienting to the conjunction cue was completely independent of the physical similarity between cue and target, and depended only on whether the conjunction cue matched the relative features of the target. These results demonstrate that attentional orienting is determined by a mechanism that can rapidly extract information about feature relationships and guide attention to the stimulus that best matches the relative attributes of the target. These results are difficult to reconcile with extant feature-specific accounts or object-based accounts of attention and argue for a relational account of conjunction search. (PsycINFO Database Recor
Steam reforming on transition-metal carbides from density-functional theory
A screening study of the steam reforming reaction (CH_4 + H_2O -> CO + 3H_2)
on early transition-metal carbides (TMC's) is performed by means of
density-functional theory calculations. The set of considered surfaces includes
the alpha-Mo_2C(100) surfaces, the low-index (111) and (100) surfaces of TiC,
VC, and delta-MoC, and the oxygenated alpha-Mo_2C(100) and TMC(111) surfaces.
It is found that carbides provide a wide spectrum of reactivities towards the
steam reforming reaction, from too reactive via suitable to too inert. The
reactivity is discussed in terms of the electronic structure of the clean
surfaces. Two surfaces, the delta-MoC(100) and the oxygen passivated
alpha-Mo_2C(100) surfaces, are identified as promising steam reforming
catalysts. These findings suggest that carbides provide a playground for
reactivity tuning, comparable to the one for pure metals.Comment: 6 pages, 4 figure
Annual variation in the levels of transcripts of sex-specific genes in the mantle of the common mussel, Mytilus edulis
Mytilus species are used as sentinels for the assessment of environmental health but sex or stage in the reproduction cycle is rarely considered even though both parameters are likely to influence responses to pollution. We have validated the use of a qPCR assay for sex identification and related the levels of transcripts to the reproductive cycle. A temporal study of mantle of Mytilus edulis found transcripts of male-specific vitelline coat lysin (VCL) and female-specific vitelline envelope receptor for lysin (VERL) could identify sex over a complete year. The levels of VCL/VERL were proportional to the numbers of sperm/ova and are indicative of the stage of the reproductive cycle. Maximal levels of VCL and VERL were found in February 2009 declining to minima between July - August before increasing and re-attaining a peak in February 2010. Water temperature may influence these transitions since they coincide with minimal water temperature in February and maximal temperature in August. An identical pattern of variation was found for a cryptic female-specific transcript (H5) but a very different pattern was observed for oestrogen receptor 2 (ER2). ER2 varied in a sex-specific way with male > female for most of the cycle, with a female maxima in July and a male maxima in December. Using artificially spawned animals, the transcripts for VCL, VERL and H5 were shown to be present in gametes and thus their disappearance from mantle is indicative of spawning. VCL and VERL are present at equivalent levels in February and July-August but during gametogenesis (August to January) and spawning (March to June) VCL is present at lower relative amounts than VERL. This may indicate sex-specific control mechanisms for these processes and highlight a potential pressure point leading to reduced reproductive output if environmental factors cause asynchrony to gamete maturation or release
Loop Quantum Gravity a la Aharonov-Bohm
The state space of Loop Quantum Gravity admits a decomposition into
orthogonal subspaces associated to diffeomorphism equivalence classes of
spin-network graphs. In this paper I investigate the possibility of obtaining
this state space from the quantization of a topological field theory with many
degrees of freedom. The starting point is a 3-manifold with a network of
defect-lines. A locally-flat connection on this manifold can have non-trivial
holonomy around non-contractible loops. This is in fact the mathematical origin
of the Aharonov-Bohm effect. I quantize this theory using standard field
theoretical methods. The functional integral defining the scalar product is
shown to reduce to a finite dimensional integral over moduli space. A
non-trivial measure given by the Faddeev-Popov determinant is derived. I argue
that the scalar product obtained coincides with the one used in Loop Quantum
Gravity. I provide an explicit derivation in the case of a single defect-line,
corresponding to a single loop in Loop Quantum Gravity. Moreover, I discuss the
relation with spin-networks as used in the context of spin foam models.Comment: 19 pages, 1 figure; v2: corrected typos, section 4 expanded
Isolated and dynamical horizons and their applications
Over the past three decades, black holes have played an important role in
quantum gravity, mathematical physics, numerical relativity and gravitational
wave phenomenology. However, conceptual settings and mathematical models used
to discuss them have varied considerably from one area to another. Over the
last five years a new, quasi-local framework was introduced to analyze diverse
facets of black holes in a unified manner. In this framework, evolving black
holes are modeled by dynamical horizons and black holes in equilibrium by
isolated horizons. We review basic properties of these horizons and summarize
applications to mathematical physics, numerical relativity and quantum gravity.
This paradigm has led to significant generalizations of several results in
black hole physics. Specifically, it has introduced a more physical setting for
black hole thermodynamics and for black hole entropy calculations in quantum
gravity; suggested a phenomenological model for hairy black holes; provided
novel techniques to extract physics from numerical simulations; and led to new
laws governing the dynamics of black holes in exact general relativity.Comment: 77 pages, 12 figures. Typos and references correcte
Characteristic Evolution and Matching
I review the development of numerical evolution codes for general relativity
based upon the characteristic initial value problem. Progress in characteristic
evolution is traced from the early stage of 1D feasibility studies to 2D
axisymmetric codes that accurately simulate the oscillations and gravitational
collapse of relativistic stars and to current 3D codes that provide pieces of a
binary black hole spacetime. Cauchy codes have now been successful at
simulating all aspects of the binary black hole problem inside an artificially
constructed outer boundary. A prime application of characteristic evolution is
to extend such simulations to null infinity where the waveform from the binary
inspiral and merger can be unambiguously computed. This has now been
accomplished by Cauchy-characteristic extraction, where data for the
characteristic evolution is supplied by Cauchy data on an extraction worldtube
inside the artificial outer boundary. The ultimate application of
characteristic evolution is to eliminate the role of this outer boundary by
constructing a global solution via Cauchy-characteristic matching. Progress in
this direction is discussed.Comment: New version to appear in Living Reviews 2012. arXiv admin note:
updated version of arXiv:gr-qc/050809
MICE: The muon ionization cooling experiment. Step I: First measurement of emittance with particle physics detectors
Copyright @ 2011 APSThe Muon Ionization Cooling Experiment (MICE) is a strategic R&D project intended to demonstrate the only practical solution to providing high brilliance beams necessary for a neutrino factory or muon collider. MICE is under development at the Rutherford Appleton Laboratory (RAL) in the United Kingdom. It comprises a dedicated beamline to generate a range of input muon emittances and momenta, with time-of-flight and Cherenkov detectors to ensure a pure muon beam. The emittance of the incoming beam will be measured in the upstream magnetic spectrometer with a scintillating fiber tracker. A cooling cell will then follow, alternating energy loss in Liquid Hydrogen (LH2) absorbers to RF cavity acceleration. A second spectrometer, identical to the first, and a second muon identification system will measure the outgoing emittance. In the 2010 run at RAL the muon beamline and most detectors were fully commissioned and a first measurement of the emittance of the muon beam with particle physics (time-of-flight) detectors was performed. The analysis of these data was recently completed and is discussed in this paper. Future steps for MICE, where beam emittance and emittance reduction (cooling) are to be measured with greater accuracy, are also presented.This work was supported by NSF grant PHY-0842798
- …