22,809 research outputs found
Recommended from our members
Low-temperature formation of polycyclic aromatic hydrocarbons in Titan’s atmosphere
The detection of benzene in Titan’s atmosphere led to the emergence of polycyclic aromatic hydrocarbons (PAHs) as potential nucleation agents triggering the growth of Titan’s orange-brownish haze layers. However, the fundamental mechanisms leading to the formation of PAHs in Titan’s low-temperature atmosphere have remained elusive. We provide persuasive evidence through laboratory experiments and computations that prototype PAHs like anthracene and phenanthrene (C14H10) are synthesized via barrierless reactions involving naphthyl radicals (C10H7•) with vinylacetylene (CH2=CH–C≡CH) in low-temperature environments. These elementary reactions are rapid, have no entrance barriers, and synthesize anthracene and phenanthrene via van der Waals complexes and submerged barriers. This facile route to anthracene and phenanthrene—potential building blocks to complex PAHs and aerosols in Titan—signifies a critical shift in the perception that PAHs can only be formed under high-temperature conditions, providing a detailed understanding of the chemistry of Titan’s atmosphere by untangling elementary reactions on the most fundamental level
Comparison of fatty-acid-binding protein 4 and adiponectin levels in infrapatellar fat pad and subcutaneous adipose tissue, synovial fluid and plasma in subjects with knee osteoarthritis
Conference Theme: Defying the Aging Spine: Our Mission ContinuesConcurrent Free Papers 2 - Basic Science/General Orthopaedics: no. 2.8Introduction: It was recently reported that inflammation is involved in the pathogenesis of osteoarthritis (OA). Fattyacid-binding
protein 4 (FABP4) and adiponectin are both adipocyte-derived cytokines closely related with inflammation
pathways. The FABP4 exhibits a pro-inflammatory property while adiponectin shows anti-inflammatory effect. The study
aimed to assess the expression of FABP4 and adiponectin in paired blood and synovial fluid from OA patients, and to
examine whether the infrapatellar fat pad (IPFP) from OA subjects would release FABP4 and adiponectin similar to that of
donor-matched subcutaneous adipose tissue (ScAT).
Materials and Methods: Plasma, synovial fluid, ScAT, and IPFP of 20 OA patients (4 males and 16 females) were collected
during total knee arthroplasty. Levels of FABP4 and adiponectin were measured in plasma, synovial fluid, and fat
conditioned media using ELISA (AIS, HKU).
Results: Levels of FABP4 were significantly higher in IPFP media than ScAT (p = 0.015), while the same were significantly
higher in synovial fluid than in plasma (p < 0.001). There were no significant differences of adiponectin levels between
IPFP and ScAT media (p = 0.737). Plasma levels of adiponectin were significantly higher than synovial fluid (p < 0.001).
Discussion and Conclusion: The OA patients exhibit an inflammatory state in local environment (IPFP and synovial fluid)
compared with systemic environment (ScAT and plasma). The IPFP may play a key role in OA inflammation and may be
an important resource of inflammatory mediators in synovial fluid.postprin
Experimental assessment and constitutive modelling of rubberised concrete materials
This paper focuses on examining the uniaxial behaviour of concrete materials incorporating rubber particles, obtained from recycled end-of-life tyres, as a replacement for mineral aggregates. A detailed account of a set of material tests on rubberised concrete cylindrical samples, in which fine and coarse mineral aggregates are replaced in equal volumes by rubber particles with various sizes, is presented. The experimental results carried out in this investigation, combined with detailed examination of data available from previous tests on rubberised concrete materials, show that the rubber particles influence the mechanical properties as a function of the quantity and type of the mineral aggregates replaced. Experimental evaluation of the complete stress-strain response depicts reductions in compressive strength, elastic modulus, and crushing strain, with the change in rubber content. Enhancement is also observed in the energy released during crushing as well as in the lateral strain at crushing, primarily due to the intrinsic deformability of the interfacial clamping of rubber particles which leads to higher lateral dilation of the material. The test results and observations enable the definition of a series of expressions to estimate the mechanical properties of rubberised concrete materials. An analytical model is also proposed for the detailed assessment of the complete stress-strain response as a function of the volumetric rubber ratio. Validations performed against the material tests carried out in this study, as well as those from previous investigations on rubberised concrete materials, show that the proposed models offer reliable predictions of the mechanical properties including the full axial and lateral stress-strain response of concrete materials incorporating rubber particles
Noise auto-correlation spectroscopy with coherent Raman scattering
Ultrafast lasers have become one of the most powerful tools in coherent
nonlinear optical spectroscopy. Short pulses enable direct observation of fast
molecular dynamics, whereas broad spectral bandwidth offers ways of controlling
nonlinear optical processes by means of quantum interferences. Special care is
usually taken to preserve the coherence of laser pulses as it determines the
accuracy of a spectroscopic measurement. Here we present a new approach to
coherent Raman spectroscopy based on deliberately introduced noise, which
increases the spectral resolution, robustness and efficiency. We probe laser
induced molecular vibrations using a broadband laser pulse with intentionally
randomized amplitude and phase. The vibrational resonances result in and are
identified through the appearance of intensity correlations in the noisy
spectrum of coherently scattered photons. Spectral resolution is neither
limited by the pulse bandwidth, nor sensitive to the quality of the temporal
and spectral profile of the pulses. This is particularly attractive for the
applications in microscopy, biological imaging and remote sensing, where
dispersion and scattering properties of the medium often undermine the
applicability of ultrafast lasers. The proposed method combines the efficiency
and resolution of a coherent process with the robustness of incoherent light.
As we demonstrate here, it can be implemented by simply destroying the
coherence of a laser pulse, and without any elaborate temporal scanning or
spectral shaping commonly required by the frequency-resolved spectroscopic
methods with ultrashort pulses.Comment: To appear in Nature Physic
Inactivation of hypoxia inducible factor (HIF) 1 alpha induces obesity-associated metabolic disorders through brown adipose tissue dysfunction
published_or_final_versionThe 14th Medical Research Conference, Hong Kong, 10 January 2009. In Hong Kong Medical Journal, 2009, v. 15, suppl. 1, p. 40, article no. 6
Fortaleza: The emergence of a network hub
Digitalisation, accelerated by the pandemic, has brought the opportunity for companies to expand their businesses beyond their geographic location and has considerably affected networks around the world. Cloud services have a better acceptance nowadays, and it is foreseen that this industry will grow exponentially in the following years. With more distributed networks that need to support customers in different locations, the model of one-single server in big financial centres has become outdated and companies tend to look for alternatives that will meet their needs, and this seems to be the case with Fortaleza, in Brazil. With several submarine cables connections available, the city has stood out as a possible hub to different regions, and this is what this paper explores. Making use of real traffic data through looking glasses, we established a latency classification that ranges from exceptionally low to high and analysed 800 latencies from Roubaix, Fortaleza and Sao Paulo to Miami, Mexico City, Frankfurt, Paris, Milan, Prague, Sao Paulo, Santiago, Buenos Aires and Luanda. We found that non-developed countries have a big dependence on the United States to route Internet traffic. Despite this, Fortaleza proves to be an alternative for serving different regions with relatively low latencies
Making a splash with water repellency
A 'splash' is usually heard when a solid body enters water at large velocity.
This phenomena originates from the formation of an air cavity resulting from
the complex transient dynamics of the free interface during the impact. The
classical picture of impacts on free surfaces relies solely on fluid inertia,
arguing that surface properties and viscous effects are negligible at
sufficiently large velocities. In strong contrast to this large-scale
hydrodynamic viewpoint, we demonstrate in this study that the wettability of
the impacting body is a key factor in determining the degree of splashing. This
unexpected result is illustrated in Fig.1: a large cavity is evident for an
impacting hydrophobic sphere (1.b), contrasting with the hydrophilic sphere's
impact under the very same conditions (1.a). This unforeseen fact is
furthermore embodied in the dependence of the threshold velocity for air
entrainment on the contact angle of the impacting body, as well as on the ratio
between the surface tension and fluid viscosity, thereby defining a critical
capillary velocity. As a paradigm, we show that superhydrophobic impacters make
a big 'splash' for any impact velocity. This novel understanding provides a new
perspective for impacts on free surfaces, and reveals that modifications of the
detailed nature of the surface -- involving physico-chemical aspects at the
nanometric scales -- provide an efficient and versatile strategy for
controlling the water entry of solid bodies at high velocity.Comment: accepted for publication in Nature Physic
Electro-optically tunable microring resonators in lithium niobate
Optical microresonators have recently attracted a growing attention in the
photonics community. Their applications range from quantum electro-dynamics to
sensors and filtering devices for optical telecommunication systems, where they
are likely to become an essential building block. The integration of nonlinear
and electro-optical properties in the resonators represents a very stimulating
challenge, as it would incorporate new and more advanced functionality. Lithium
niobate is an excellent candidate material, being an established choice for
electro-optic and nonlinear optical applications. Here we report on the first
realization of optical microring resonators in submicrometric thin films of
lithium niobate. The high index contrast films are produced by an improved
crystal ion slicing and bonding technique using benzocyclobutene. The rings
have radius R=100 um and their transmission spectrum has been tuned using the
electro-optic effect. These results open new perspectives for the use of
lithium niobate in chip-scale integrated optical devices and nonlinear optical
microcavities.Comment: 15 pages, 8 figure
Observation of the Nernst signal generated by fluctuating Cooper pairs
Long-range order is destroyed in a superconductor warmed above its critical
temperature (Tc). However, amplitude fluctuations of the superconducting order
parameter survive and lead to a number of well established phenomena such as
paraconductivity : an excess of charge conductivity due to the presence of
short-lived Cooper pairs in the normal state. According to an untested theory,
these pairs generate a transverse thermoelectric (Nernst) signal. In amorphous
superconducting films, the lifetime of Cooper pairs exceeds the elastic
lifetime of quasi-particles in a wide temperature range above Tc; consequently,
the Cooper pairs Nernst signal dominate the response of the normal electrons
well above Tc. In two dimensions, the magnitude of the expected signal depends
only on universal constants and the superconducting coherence length, so the
theory can be unambiguously tested. Here, we report on the observation of a
Nernst signal in such a superconductor traced deep into the normal state. Since
the amplitude of this signal is in excellent agreement with the theoretical
prediction, the result provides the first unambiguous case for a Nernst effect
produced by short-lived Cooper pairs
Prenatal hypoxia induces increased cardiac contractility on a background of decreased capillary density.
Background: Chronic hypoxia in utero (CHU) is one of the most common insults to fetal development and may be associated with poor cardiac recovery from ischaemia-reperfusion injury,yet the effects on normal cardiac mechanical performance are poorly understood.
Methods: Pregnant female wistar rats were exposed to hypoxia (12% oxygen, balance nitrogen)for days 10–20 of pregnancy. Pups were born into normal room air and weaned normally. At 10 weeks of age, hearts were excised under anaesthesia and underwent retrograde 'Langendorff' perfusion. Mechanical performance was measured at constant filling pressure (100 cm H2O) with intraventricular balloon. Left ventricular free wall was dissected away and capillary density estimated following alkaline phosphatase staining. Expression of SERCA2a and Nitric Oxide Synthases (NOS) proteins were estimated by immunoblotting.
Results: CHU significantly increased body mass (P < 0.001) compared with age-matched control rats but was without effect on relative cardiac mass. For incremental increases in left ventricular balloon volume, diastolic pressure was preserved. However, systolic pressure was significantly greater following CHU for balloon volume = 50 μl (P < 0.01) and up to 200 μl (P < 0.05). For higher balloon volumes systolic pressure was not significantly different from control. Developed pressures were correspondingly increased relative to controls for balloon volumes up to 250 μl (P < 0.05).Left ventricular free wall capillary density was significantly decreased in both epicardium (18%; P <0.05) and endocardium (11%; P < 0.05) despite preserved coronary flow. Western blot analysis revealed no change to the expression of SERCA2a or nNOS but immuno-detectable eNOS protein was significantly decreased (P < 0.001) in cardiac tissue following chronic hypoxia in utero.
Conclusion: These data offer potential mechanisms for poor recovery following ischaemia, including decreased coronary flow reserve and impaired angiogenesis with subsequent detrimental effects of post-natal cardiac performance
- …