66 research outputs found

    Grifonin-1: A Small HIV-1 Entry Inhibitor Derived from the Algal Lectin, Griffithsin

    Get PDF
    Background: Griffithsin, a 121-residue protein isolated from a red algal Griffithsia sp., binds high mannose N-linked glycans of virus surface glycoproteins with extremely high affinity, a property that allows it to prevent the entry of primary isolates and laboratory strains of T- and M-tropic HIV-1. We used the sequence of a portion of griffithsin's sequence as a design template to create smaller peptides with antiviral and carbohydrate-binding properties. Methodology/Results: The new peptides derived from a trio of homologous β-sheet repeats that comprise the motifs responsible for its biological activity. Our most active antiviral peptide, grifonin-1 (GRFN-1), had an EC50 of 190.8±11.0 nM in in vitro TZM-bl assays and an EC50 of 546.6±66.1 nM in p24gag antigen release assays. GRFN-1 showed considerable structural plasticity, assuming different conformations in solvents that differed in polarity and hydrophobicity. Higher concentrations of GRFN-1 formed oligomers, based on intermolecular β-sheet interactions. Like its parent protein, GRFN-1 bound viral glycoproteins gp41 and gp120 via the N-linked glycans on their surface. Conclusion: Its substantial antiviral activity and low toxicity in vitro suggest that GRFN-1 and/or its derivatives may have therapeutic potential as topical and/or systemic agents directed against HIV-1

    In vitro synthesis of infectious dna of murine leukaemia virus.

    No full text
    DNA synthesised in vitro by purified virions of murine leukaemia virus is infectious. Neither RNA nor protein is required for infectivity. Transfection with reverse transcriptase product shows a single-hit dose response and results in the production of complete, infectious virus

    The Mongoose, the Pheasant, the Pox, and the Retrovirus

    Get PDF
    Paleovirology is the study of ancient viruses. The existence of a paleovirus can sometimes be detected by virtue of its accidental insertion into the germline of different animal species, which allows one to date when the virus actually existed. However, the ancient and the modern often connect, as modern viruses have unexpected origins that can be traced to ancient infections. The genomes of two species of mongooses and an egg-laying mammal called an echidna show that a virus currently present in poultry, the reticuloendotheliosis virus (REV), is actually of ancient exotic mammalian origin. REV apparently spread to poultry through a circuitous route involving the isolation of malaria parasites from a pheasant from Borneo housed at the Bronx Zoo that was contaminated with REV. Repeated passage of this virus in poultry adapted the virus to its new host. At some point, the virus got inserted into another virus, called fowlpox virus, which has spread back into the wild. Although REV may still exist somewhere in a mammalian host, its modern form links an 8 million-year-old infection of the ancestor of a mongoose to a virus that now is circulating in wild birds through malaria studies in the mid-20(th) century. These lessons of ancient and modern viruses have implications for modern human pandemics from viral reservoirs and for human interventions that may come with unintended consequences

    Pathfinders in oncology from the time the causal relation between tobacco use and lung cancer was established to publication of the first Cancer Staging Manual by the American Joint Committee on Cancer

    No full text
    corecore