96 research outputs found

    Free energy for parameterized Polyakov loops in SU(2) and SU(3) lattice gauge theory

    Full text link
    We present a study of the free energy of parameterized Polyakov loops P in SU(2) and SU(3) lattice gauge theory as a function of the parameters that characterize P. We explore temperatures below and above the deconfinement transition, and for our highest temperatures T > 5 T_c we compare the free energy to perturbative results.Comment: Minor changes. Final version to appear in JHE

    Angles in Fuzzy Disc and Angular Noncommutative Solitons

    Full text link
    The fuzzy disc, introduced by the authors of Ref.[1], is a disc-shaped region in a noncommutative plane, and is a fuzzy approximation of a commutative disc. In this paper we show that one can introduce a concept of angles to the fuzzy disc, by using the phase operator and phase states known in quantum optics. We gave a description of a fuzzy disc in terms of operators and their commutation relations, and studied properties of angular projection operators. A similar construction for a fuzzy annulus is also given. As an application, we constructed fan-shaped soliton solutions of a scalar field theory on a fuzzy disc, which corresponds to a fan-shaped D-brane. We also applied this concept to the theory of noncommutative gravity that we proposed in Ref.[2]. In addition, possible connections to black hole microstates, holography and an experimental test of noncommutativity by laser physics are suggested.Comment: 24 pages, 12 figures; v2: minor mistake corrected in Eq.(3.21), and discussion adapted accordingly; v3: a further discussion on the algebra of the fuzzy disc added in subsection 3.2; v4: discussions improved and typos correcte

    The deconfinement transition of finite density QCD with heavy quarks from strong coupling series

    Get PDF
    Starting from Wilson's action, we calculate strong coupling series for the Polyakov loop susceptibility in lattice gauge theories for various small N_\tau in the thermodynamic limit. Analysing the series with Pad\'e approximants, we estimate critical couplings and exponents for the deconfinement phase transition. For SU(2) pure gauge theory our results agree with those from Monte-Carlo simulations within errors, which for the coarser N_\tau=1,2 lattices are at the percent level. For QCD we include dynamical fermions via a hopping parameter expansion. On a N_\tau=1 lattice with N_f=1,2,3, we locate the second order critical point where the deconfinement transition turns into a crossover. We furthermore determine the behaviour of the critical parameters with finite chemical potential and find the first order region to shrink with growing \mu. Our series moreover correctly reflects the known Z(N) transition at imaginary chemical potential.Comment: 18 pages, 7 figures, typos corrected, version published in JHE

    No Forbidden Landscape in String/M-theory

    Get PDF
    Scale invariant but non-conformal field theories are forbidden in (1+1) dimension, and so should be the corresponding holographic dual gravity theories. We conjecture that such scale invariant but non-conformal field configurations do not exist in the string/M-theory. We provide a proof of this conjecture in the classical supergravity limit under a certain gauge condition. Our proof does also apply in higher dimensional scale invariant but non-conformal field configurations, which suggests that scale invariant but non-conformal field theories may be forbidden in higher dimensions as well.Comment: 14 pages, v2: energy condition on c-theorem is corrected, v3: extra assumption in the proof is discussed due to a sign error in the previous versio

    Finite-Temperature Fractional D2-Branes and the Deconfinement Transition in 2+1 Dimensions

    Full text link
    The supergravity dual to N regular and M fractional D2-branes on the cone over \mathbb{CP}^3 has a naked singularity in the infrared. One can resolve this singularity and obtain a regular fractional D2-brane solution dual to a confining 2+1 dimensional N = 1 supersymmetric field theory. The confining vacuum of this theory is described by the solution of Cvetic, Gibbons, Lu and Pope. In this paper, we explore the alternative possibility for resolving the singularity - the creation of a regular horizon. The black-hole solution we find corresponds to the deconfined phase of this dual gauge theory in three dimensions. This solution is derived in perturbation theory in the number of fractional branes. We argue that there is a first-order deconfinement transition. Connections to Chern--Simons matter theories, the ABJM proposal and fractional M2-branes are presented.Comment: v3: analytic solutions are expose

    The RN/CFT Correspondence Revisited

    Full text link
    We reconsidered the quantum gravity description of the near horizon extremal Reissner-Nordstr{\o}m black hole in the viewpoint of the AdS2_2/CFT1_1 correspondence. We found that, for pure electric case, the right moving central charge of dual 1D CFT is 6Q26 Q^2 which is different from the previous result 6Q36 Q^3 of left moving sector obtained by warped AdS3_3/CFT2_2 description. We discussed the discrepancy in these two approaches and examined novel properties of our result.Comment: revtex4, 16 pages, sign mistakes corrected, references include

    Hidden Conformal Symmetry of the Reissner-Nordstr{\o}m Black Holes

    Full text link
    Motivated by recent progresses in the holographic descriptions of the Kerr and Reissner-Nordstr{\o}m (RN) black holes, we explore the hidden conformal symmetry of nonextremal uplifted 5D RN black hole by studying the near horizon wave equation of a massless scalar field propagating in this background. Similar to the Kerr black hole case, this hidden symmetry is broken by the periodicity of the associated angle coordinate in the background geometry, but the results somehow testify the dual CFT description of the nonextremal RN black holes. The duality is further supported by matching of the entropies and absorption cross sections calculated from both CFT and gravity sides.Comment: 14 pages, no figur

    Holographic Duals of Near-extremal Reissner-Nordstrom Black Holes

    Full text link
    We consider the AdS3/CFT2\mathrm{AdS}_3/\mathrm{CFT}_2 description of Reissner-Nordstr{\o}m black holes by studying their uplifted counterparts in five dimensions. Assuming a natural size of the extra dimension, the near horizon geometries for the extremal limit are exactly AdS3×S2\mathrm{AdS}_3 \times \mathrm{S}^2. We compute the scattering amplitude of a scalar field, with a mode near threshold of frequency and extra dimensional momentum, by a near extremal uplifted black hole. The absorption cross section agrees with the two point function of the CFT dual to the scalar field.Comment: reference added, improper statements corrected, 17 pages, no figure

    Composite GUTs: models and expectations at the LHC

    Get PDF
    We investigate grand unified theories (GUTs) in scenarios where electroweak (EW) symmetry breaking is triggered by a light composite Higgs, arising as a Nambu-Goldstone boson from a strongly interacting sector. The evolution of the standard model (SM) gauge couplings can be predicted at leading order, if the global symmetry of the composite sector is a simple group G that contains the SM gauge group. It was noticed that, if the right-handed top quark is also composite, precision gauge unification can be achieved. We build minimal consistent models for a composite sector with these properties, thus demonstrating how composite GUTs may represent an alternative to supersymmetric GUTs. Taking into account the new contributions to the EW precision parameters, we compute the Higgs effective potential and prove that it realizes consistently EW symmetry breaking with little fine-tuning. The G group structure and the requirement of proton stability determine the nature of the light composite states accompanying the Higgs and the top quark: a coloured triplet scalar and several vector-like fermions with exotic quantum numbers. We analyse the signatures of these composite partners at hadron colliders: distinctive final states contain multiple top and bottom quarks, either alone or accompanied by a heavy stable charged particle, or by missing transverse energy.Comment: 55 pages, 13 figures, final version to be published in JHE

    Online dispute resolution: an artificial intelligence perspective

    Get PDF
    Litigation in court is still the main dispute resolution mode. However, given the amount and characteristics of the new disputes, mostly arising out of electronic contracting, courts are becoming slower and outdated. Online Dispute Resolution (ODR) recently emerged as a set of tools and techniques, supported by technology, aimed at facilitating conflict resolution. In this paper we present a critical evaluation on the use of Artificial Intelligence (AI) based techniques in ODR. In order to fulfill this goal, we analyze a set of commercial providers (in this case twenty four) and some research projects (in this circumstance six). Supported by the results so far achieved, a new approach to deal with the problem of ODR is proposed, in which we take on some of the problems identified in the current state of the art in linking ODR and AI.The work described in this paper is included in TIARAC - Telematics and Artificial Intelligence in Alternative Conflict Resolution Project (PTDC/JUR/71354/2006), which is a research project supported by FCT (Science & Technology Foundation), Portugal. The work of Davide Carneiro is also supported by a doctoral grant by FCT (SFRH/BD/64890/2009).Acknowledgments. The work described in this paper is included in TIARAC - Telematics and Artificial Intelligence in Alternative Conflict Resolution Project (PTDC/JUR/71354/2006), which is a research project supported by FCT (Science & Technology Foundation), Portugal. The work of Davide Carneiro is also supported by a doctoral grant by FCT (SFRH/BD/64890/2009)
    corecore