15 research outputs found

    Functional generalized additive models

    Full text link
    We introduce the functional generalized additive model (FGAM), a novel regression model for association studies between a scalar response and a functional predictor. We model the link-transformed mean response as the integral with respect to t of F{X(t), t} where F(·, ·) is an unknown regression function and X(t) is a functional covariate. Rather than having an additive model in a finite number of principal components as by Müller and Yao (2008), our model incorporates the functional predictor directly and thus our model can be viewed as the natural functional extension of generalized additive models. We estimate F(·, ·) using tensor-product B-splines with roughness penalties. A pointwise quantile transformation of the functional predictor is also considered to ensure each tensor-product B-spline has observed data on its support. The methods are evaluated using simulated data and their predictive performance is compared with other competing scalar-on-function regression alternatives. We illustrate the usefulness of our approach through an application to brain tractography, where X(t) is a signal from diffusion tensor imaging at position, t, along a tract in the brain. In one example, the response is disease-status (case or control) and in a second example, it is the score on a cognitive test. The FGAM is implemented in R in the refund package. There are additional supplementary materials available online. © 2013 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America

    The Use of Functional Data Analysis to Evaluate Activity in a Spontaneous Model of Degenerative Joint Disease Associated Pain in Cats

    Get PDF
    Introduction and objectives: accelerometry is used as an objective measure of physical activity in humans and veterinary species. In cats, one important use of accelerometry is in the study of therapeutics designed to treat degenerative joint disease (DJD) associated pain, where it serves as the most widely applied objective outcome measure. These analyses have commonly used summary measures, calculating the mean activity per-minute over days and comparing between treatment periods. While this technique has been effective, information about the pattern of activity in cats is lost. In this study, functional data analysis was applied to activity data from client-owned cats with (n = 83) and without (n = 15) DJD. Functional data analysis retains information about the pattern of activity over the 24-hour day, providing insight into activity over time. We hypothesized that 1) cats without DJD would have higher activity counts and intensity of activity than cats with DJD; 2) that activity counts and intensity of activity in cats with DJD would be inversely correlated with total radiographic DJD burden and total orthopedic pain score; and 3) that activity counts and intensity would have a different pattern on weekends versus weekdays. Results and conclusions: results showed marked inter-cat variability in activity. Cats exhibited a bimodal pattern of activity with a sharp peak in the morning and broader peak in the evening. Results further showed that this pattern was different on weekends than weekdays, with the morning peak being shifted to the right (later). Cats with DJD showed different patterns of activity from cats without DJD, though activity and intensity were not always lower; instead both the peaks and troughs of activity were less extreme than those of the cats without DJD. Functional data analysis provides insight into the pattern of activity in cats, and an alternative method for analyzing accelerometry data that incorporates fluctuations in activity across the day.UCR::Vicerrectoría de Docencia::Ciencias Sociales::Facultad de Ciencias Económicas::Escuela de Estadístic

    Significance tests for functional data with complex dependence structure

    Full text link
    © 2014 Elsevier B.V. We propose an L2-norm based global testing procedure for the null hypothesis that multiple group mean functions are equal, for functional data with complex dependence structure. Specifically, we consider the setting of functional data with a multilevel structure of the form groups-clusters or subjects-units, where the unit-level profiles are spatially correlated within the cluster, and the cluster-level data are independent. Orthogonal series expansions are used to approximate the group mean functions and the test statistic is estimated using the basis coefficients. The asymptotic null distribution of the test statistic is developed, under mild regularity conditions. To our knowledge this is the first work that studies hypothesis testing, when data have such complex multilevel functional and spatial structure. Two small-sample alternatives, including a novel block bootstrap for functional data, are proposed, and their performance is examined in simulation studies. The paper concludes with an illustration of a motivating experiment

    Multilevel cross-dependent binary longitudinal data

    Full text link
    Summary: We provide insights into new methodology for the analysis of multilevel binary data observed longitudinally, when the repeated longitudinal measurements are correlated. The proposed model is logistic functional regression conditioned on three latent processes describing the within- and between-variability, and describing the cross-dependence of the repeated longitudinal measurements. We estimate the model components without employing mixed-effects modeling but assuming an approximation to the logistic link function. The primary objectives of this article are to highlight the challenges in the estimation of the model components, to compare two approximations to the logistic regression function, linear and exponential, and to discuss their advantages and limitations. The linear approximation is computationally efficient whereas the exponential approximation applies for rare events functional data. Our methods are inspired by and applied to a scientific experiment on spectral backscatter from long range infrared light detection and ranging (LIDAR) data. The models are general and relevant to many new binary functional data sets, with or without dependence between repeated functional measurements. © 2013, The International Biometric Society

    Additive Function-on-Function Regression

    Full text link
    © 2018 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America. We study additive function-on-function regression where the mean response at a particular time point depends on the time point itself, as well as the entire covariate trajectory. We develop a computationally efficient estimation methodology based on a novel combination of spline bases with an eigenbasis to represent the trivariate kernel function. We discuss prediction of a new response trajectory, propose an inference procedure that accounts for total variability in the predicted response curves, and construct pointwise prediction intervals. The estimation/inferential procedure accommodates realistic scenarios, such as correlated error structure as well as sparse and/or irregular designs. We investigate our methodology in finite sample size through simulations and two real data applications. Supplementary material for this article is available online
    corecore