84 research outputs found

    Restored in vivo-like membrane lipidomics positively influence in vitro features of cultured mesenchymal stromal/stem cells derived from human placenta

    Get PDF
    BACKGROUND: The study of lipid metabolism in stem cell physiology has recently raised great interest. The role of lipids goes beyond the mere structural involvement in assembling extra- and intra-cellular compartments. Nevertheless, we are still far from understanding the impact of membrane lipidomics in stemness maintenance and differentiation patterns. In the last years, it has been reported how in vitro cell culturing can modify membrane lipidomics. The aim of the present work was to study the membrane fatty acid profile of mesenchymal stromal cells (MSCs) derived from human fetal membranes (hFM-MSCs) and to correlate this to specific biological properties by using chemically defined tailored lipid supplements (Refeed®). METHODS: Freshly isolated hFM-MSCs were characterized for their membrane fatty acid composition. hFM-MSCs were cultivated in vitro following a classical protocol and their membrane fatty acid profile at different passages was compared to the profile in vivo. A tailored Refeed® lipid supplement was developed with the aim of reducing the differences created by the in vitro cultivation and was tested on cultured hFM-MSCs. Cell morphology, viability, proliferation, angiogenic differentiation, and immunomodulatory properties after in vitro exposure to the tailored Refeed® lipid supplement were investigated. RESULTS: A significant modification of hFM-MSC membrane fatty acid composition occurred during in vitro culture. Using a tailored lipid supplement, the fatty acid composition of cultured cells remained more similar to their in vivo counterparts, being characterized by a higher polyunsaturated and omega-6 fatty acid content. These changes in membrane composition had no effect on cell morphology and viability, but were linked with increased cell proliferation rate, angiogenic differentiation, and immunomodulatory properties. In particular, Refeed®-supplemented hFM-MSCs showed greater ability to express fully functional cell membrane molecules. CONCLUSIONS: Culturing hFM-MSCs alters their fatty acid composition. A tailored lipid supplement is able to improve in vitro hFM-MSC functional properties by recreating a membrane environment more similar to the physiological counterpart. This approach should be considered in cell therapy applications in order to maintain a higher cell quality during in vitro passaging and to influence the outcome of cell-based therapeutic approaches when cells are administered to patients

    Cellular Basis of Tissue Regeneration by Omentum

    Get PDF
    The omentum is a sheet-like tissue attached to the greater curvature of the stomach and contains secondary lymphoid organs called milky spots. The omentum has been used for its healing potential for over 100 years by transposing the omental pedicle to injured organs (omental transposition), but the mechanism by which omentum helps the healing process of damaged tissues is not well understood. Omental transposition promotes expansion of pancreatic islets, hepatocytes, embryonic kidney, and neurons. Omental cells (OCs) can be activated by foreign bodies in vivo. Once activated, they become a rich source for growth factors and express pluripotent stem cell markers. Moreover, OCs become engrafted in injured tissues suggesting that they might function as stem cells

    Understanding the Warburg effect and the prognostic value of stromal caveolin-1 as a marker of a lethal tumor microenvironment

    Get PDF
    Cancer cells show a broad spectrum of bioenergetic states, with some cells using aerobic glycolysis while others rely on oxidative phosphorylation as their main source of energy. In addition, there is mounting evidence that metabolic coupling occurs in aggressive tumors, between epithelial cancer cells and the stromal compartment, and between well-oxygenated and hypoxic compartments. We recently showed that oxidative stress in the tumor stroma, due to aerobic glycolysis and mitochondrial dysfunction, is important for cancer cell mutagenesis and tumor progression. More specifically , increased autophagy/mitophagy in the tumor stroma drives a form of parasitic epithelial-stromal metabolic coupling. These findings explain why it is effective to treat tumors with either inducers or inhibitors of autophagy, as both would disrupt this energetic coupling. We also discuss evidence that glutamine addiction in cancer cells produces ammonia via oxidative mitochondrial metabolism. Ammonia production in cancer cells, in turn, could then help maintain autophagy in the tumor stromal compartment. In this vicious cycle, the initial glutamine provided to cancer cells would be produced by autophagy in the tumor stroma. Thus, we believe that parasitic epithelial-stromal metabolic coupling has important implications for cancer diagnosis and therapy, for example, in designing novel metabolic imaging techniques and establishing new targeted therapies. In direct support of this notion, we identified a loss of stromal caveolin-1 as a marker of oxidative stress, hypoxia, and autophagy in the tumor microenvironment, explaining its powerful predictive value. Loss of stromal caveolin-1 in breast cancers is associated with early tumor recurrence, metastasis, and drug resistance, leading to poor clinical outcome

    Physical activity, sedentary time and gain in overall and central body fat: 7-year follow-up of the ProActive trial cohort.

    Get PDF
    OBJECTIVE: The objective of this study is to examine the independent associations of time spent in moderate-to-vigorous physical activity (MVPA) and sedentary (SED-time), with total and abdominal body fat (BF), and the bidirectionality of these associations in adults at high risk of type 2 diabetes. DESIGN AND SUBJECTS: We measured MVPA (min per day) and SED-time (h per day) by accelerometry, and indices of total (body weight, fat mass (FM), BF% and FM index) and abdominal BF (waist circumference (WC)) using standard procedures in 231 adults (41.3 ± 6.4 years) with parental history of type 2 diabetes (ProActive UK) at baseline, 1-year and 7-year follow-up. Mixed effects models were used to quantify the independent associations (expressed as standardised β-coefficients (95% confidence interval (CI))) of MVPA and SED-time with fat indices, using data from all three time points. All models were adjusted for age, sex, intervention arm, monitor wear time, follow-up time, smoking status, socioeconomic status and MVPA/SED-time. RESULTS: MVPA was inversely and independently associated with all indices of total BF (for example, 1 s.d. higher MVPA was associated with a reduction in FM, β = -0.09 (95% CI: -0.14, -0.04) s.d.) and abdominal BF (for example, WC: β = -0.07 (-0.12, -0.02)). Similarly, higher fat indices were independently associated with a reduction in MVPA (for example, WC: β = -0.25 (-0.36, -0.15); FM: β = -0.27 (-0.36, -0.18)). SED-time was positively and independently associated with most fat indices (for example, WC: β = 0.03 (-0.04, 0.09); FM: β = 0.10 (0.03, 0.17)). Higher values of all fat indices independently predicted longer SED-time (for example, WC: β = 0.10 (0.02, 0.18), FM: β = 0.15 (0.07, 0.22)). CONCLUSIONS: The associations of MVPA and SED-time with total and abdominal BF are bidirectional and independent among individuals at high risk for type 2 diabetes. The association between BF and MVPA is stronger than the reciprocal association, highlighting the importance of considering BF as a determinant of decreasing activity and a potential consequence. Promoting more MVPA and less SED-time may reduce total and abdominal BF

    Host-mediated sugar oxidation promotes post-antibiotic pathogen expansion.

    No full text
    Changes in the gut microbiota may underpin many human diseases, but the mechanisms that are responsible for altering microbial communities remain poorly understood. Antibiotic usage elevates the risk of contracting gastroenteritis caused by Salmonella enterica serovars, increases the duration for which patients shed the pathogen in their faeces, and may on occasion produce a bacteriologic and symptomatic relapse. These antibiotic-induced changes in the gut microbiota can be studied in mice, in which the disruption of a balanced microbial community by treatment with the antibiotic streptomycin leads to an expansion of S. enterica serovars in the large bowel. However, the mechanisms by which streptomycin treatment drives an expansion of S. enterica serovars are not fully resolved. Here we show that host-mediated oxidation of galactose and glucose promotes post-antibiotic expansion of S. enterica serovar Typhimurium (S. Typhimurium). By elevating expression of the gene encoding inducible nitric oxide synthase (iNOS) in the caecal mucosa, streptomycin treatment increased post-antibiotic availability of the oxidation products galactarate and glucarate in the murine caecum. S. Typhimurium used galactarate and glucarate within the gut lumen of streptomycin pre-treated mice, and genetic ablation of the respective catabolic pathways reduced S. Typhimurium competitiveness. Our results identify host-mediated oxidation of carbohydrates in the gut as a mechanism for post-antibiotic pathogen expansion
    corecore