49 research outputs found

    Aligning molecular studies of mycorrhizal fungal diversity with ecologically important levels of diversity in ecosystems.

    Get PDF
    Arbuscular mycorrhizal fungi (AMF) occur in the roots of most plants and are an ecologically important component of the soil microbiome. Richness of AMF taxa is a strong driver of plant diversity and productivity, thus providing a rationale for characterizing AMF diversity in natural ecosystems. Consequently, a large number of molecular studies on AMF community composition are currently underway. Most published studies, at best, only address species or genera-level resolution. However, several experimental studies indicate that variation in plant performance is large among plants colonised by different individuals of one AMF species. Thus, there is a potential disparity between how molecular community ecologists are currently describing AMF diversity and the level of AMF diversity that may actually be ecologically relevant. We propose a strategy to find many polymorphic loci that can define within-species genetic variability within AMF, or at any level of resolution desired within the Glomermycota. We propose that allele diversity at the intraspecific level could then be measured for target AMF groups, or at other levels of resolution, in environmental DNA samples. Combining the use of such markers with experimental studies on AMF diversity would help to elucidate the most important level(s) of AMF diversity in plant communities. Our goal is to encourage ecologists who are trying to explain how mycorrhizal fungal communities are structured to take an approach that could also yield meaningful information that is relevant to the diversity, functioning and productivity of ecosystems

    Effects of antenatal betamethasone on preterm human and mouse ductus arteriosus: comparison with baboon data.

    Get PDF
    BackgroundAlthough studies involving preterm infants ≤34 weeks gestation report a decreased incidence of patent ductus arteriosus after antenatal betamethasone, studies involving younger gestation infants report conflicting results.MethodsWe used preterm baboons, mice, and humans (≤276/7 weeks gestation) to examine betamethasone's effects on ductus gene expression and constriction both in vitro and in vivo.ResultsIn mice, betamethasone increased the sensitivity of the premature ductus to the contractile effects of oxygen without altering the effects of other contractile or vasodilatory stimuli. Betamethasone's effects on oxygen sensitivity could be eliminated by inhibiting endogenous prostaglandin/nitric oxide signaling. In mice and baboons, betamethasone increased the expression of several developmentally regulated genes that mediate oxygen-induced constriction (K+ channels) and inhibit vasodilator signaling (phosphodiesterases). In human infants, betamethasone increased the rate of ductus constriction at all gestational ages. However, in infants born ≤256/7 weeks gestation, betamethasone's contractile effects were only apparent when prostaglandin signaling was inhibited, whereas at 26-27 weeks gestation, betamethasone's contractile effects were apparent even in the absence of prostaglandin inhibitors.ConclusionsWe speculate that betamethasone's contractile effects may be mediated through genes that are developmentally regulated. This could explain why betamethasone's effects vary according to the infant's developmental age at birth

    The role of community and population ecology in applying mycorrhizal fungi for improved food security.

    Get PDF
    The global human population is expected to reach ∼9 billion by 2050. Feeding this many people represents a major challenge requiring global crop yield increases of up to 100%. Microbial symbionts of plants such as arbuscular mycorrhizal fungi (AMF) represent a huge, but unrealized resource for improving yields of globally important crops, especially in the tropics. We argue that the application of AMF in agriculture is too simplistic and ignores basic ecological principals. To achieve this challenge, a community and population ecology approach can contribute greatly. First, ecologists could significantly improve our understanding of the determinants of the survival of introduced AMF, the role of adaptability and intraspecific diversity of AMF and whether inoculation has a direct or indirect effect on plant production. Second, we call for extensive metagenomics as well as population genomics studies that are crucial to assess the environmental impact that introduction of non-local AMF may have on native AMF communities and populations. Finally, we plead for an ecologically sound use of AMF in efforts to increase food security at a global scale in a sustainable manner

    Population genomics reveals that within-fungus polymorphism is common and maintained in populations of the mycorrhizal fungus Rhizophagus irregularis.

    Get PDF
    Arbuscular mycorrhizal (AM) fungi are symbionts of most plants, increasing plant growth and diversity. The model AM fungus Rhizophagus irregularis (isolate DAOM 197198) exhibits low within-fungus polymorphism. In contrast, another study reported high within-fungus variability. Experiments with other R. irregularis isolates suggest that within-fungus genetic variation can affect the fungal phenotype and plant growth, highlighting the biological importance of such variation. We investigated whether there is evidence of differing levels of within-fungus polymorphism in an R. irregularis population. We genotyped 20 isolates using restriction site-associated DNA sequencing and developed novel approaches for characterizing polymorphism among haploid nuclei. All isolates exhibited higher within-isolate poly-allelic single-nucleotide polymorphism (SNP) densities than DAOM 197198 in repeated and non-repeated sites mapped to the reference genome. Poly-allelic SNPs were independently confirmed. Allele frequencies within isolates deviated from diploids or tetraploids, or that expected for a strict dikaryote. Phylogeny based on poly-allelic sites was robust and mirrored the standard phylogeny. This indicates that within-fungus genetic variation is maintained in AM fungal populations. Our results predict a heterokaryotic state in the population, considerable differences in copy number variation among isolates and divergence among the copies, or aneuploidy in some isolates. The variation may be a combination of all of these hypotheses. Within-isolate genetic variation in R. irregularis leads to large differences in plant growth. Therefore, characterizing genomic variation within AM fungal populations is of major ecological importance

    Comparative analysis of medicinal plants used in traditional medicine in Italy and Tunisia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Italy and Tunisia (Africa for the Romans), facing each other on the opposite sides of the Mediterranean Sea, have been historically linked since the ancient times. Over the centuries both countries were mutually dominated so the vestiges and traces of a mutual influence are still present. The aim of the present study is to conduct a comparative analysis of the medicinal species present in the respective Floras in order to explore potential analogies and differences in popular phytotherapy that have come out from those reciprocal exchanges having taken place over the centuries</p> <p>Methods</p> <p>The comparative analysis based on the respective floras of both countries takes into consideration the bulk of medicinal species mutually present in Italy and Tunisia, but it focuses on the species growing in areas which are similar in climate. The medicinal uses of these species are considered in accordance with the ethnobotanical literature.</p> <p>Results</p> <p>A list of 153 medicinal species belonging to 60 families, present in both floras and used in traditional medicine, was drawn. A considerable convergence in therapeutic uses of many species emerged from these data.</p> <p>Conclusion</p> <p>This comparative analysis strengthens the firm belief that ethno-botanical findings represent not only an important shared heritage, developed over the centuries, but also a considerable mass of data that should be exploited in order to provide new and useful knowledge.</p

    Comparative Genomics Suggests that the Fungal Pathogen Pneumocystis Is an Obligate Parasite Scavenging Amino Acids from Its Host's Lungs

    Get PDF
    Pneumocystis jirovecii is a fungus causing severe pneumonia in immuno-compromised patients. Progress in understanding its pathogenicity and epidemiology has been hampered by the lack of a long-term in vitro culture method. Obligate parasitism of this pathogen has been suggested on the basis of various features but remains controversial. We analysed the 7.0 Mb draft genome sequence of the closely related species Pneumocystis carinii infecting rats, which is a well established experimental model of the disease. We predicted 8’085 (redundant) peptides and 14.9% of them were mapped onto the KEGG biochemical pathways. The proteome of the closely related yeast Schizosaccharomyces pombe was used as a control for the annotation procedure (4’974 genes, 14.1% mapped). About two thirds of the mapped peptides of each organism (65.7% and 73.2%, respectively) corresponded to crucial enzymes for the basal metabolism and standard cellular processes. However, the proportion of P. carinii genes relative to those of S. pombe was significantly smaller for the “amino acid metabolism” category of pathways than for all other categories taken together (40 versus 114 against 278 versus 427, P<0.002). Importantly, we identified in P. carinii only 2 enzymes specifically dedicated to the synthesis of the 20 standard amino acids. By contrast all the 54 enzymes dedicated to this synthesis reported in the KEGG atlas for S. pombe were detected upon reannotation of S. pombe proteome (2 versus 54 against 278 versus 427, P<0.0001). This finding strongly suggests that species of the genus Pneumocystis are scavenging amino acids from their host's lung environment. Consequently, they would have no form able to live independently from another organism, and these parasites would be obligate in addition to being opportunistic. These findings have implications for the management of patients susceptible to P. jirovecii infection given that the only source of infection would be other humans

    Tyrosine Phosphorylation of the UDP-Glucose Dehydrogenase of Escherichia coli Is at the Crossroads of Colanic Acid Synthesis and Polymyxin Resistance

    Get PDF
    BACKGROUND:In recent years, an idiosyncratic new class of bacterial enzymes, named BY-kinases, has been shown to catalyze protein-tyrosine phosphorylation. These enzymes share no structural and functional similarities with their eukaryotic counterparts and, to date, only few substrates of BY-kinases have been characterized. BY-kinases have been shown to participate in various physiological processes. Nevertheless, we are at a very early stage of defining their importance in the bacterial cell. In Escherichia coli, two BY-kinases, Wzc and Etk, have been characterized biochemically. Wzc has been shown to phosphorylate the UDP-glucose dehydrogenase Ugd in vitro. Not only is Ugd involved in the biosynthesis of extracellular polysaccharides, but also in the production of UDP-4-amino-4-deoxy-L-arabinose, a compound that renders E. coli resistant to cationic antimicrobial peptides. METHODOLOGY/PRINCIPAL FINDINGS:Here, we studied the role of Ugd phosphorylation. We first confirmed in vivo the phosphorylation of Ugd by Wzc and we demonstrated that Ugd is also phosphorylated by Etk, the other BY-kinase identified in E. coli. Tyrosine 71 (Tyr71) was characterized as the Ugd site phosphorylated by both Wzc and Etk. The regulatory role of Tyr71 phosphorylation on Ugd activity was then assessed and Tyr71 mutation was found to prevent Ugd activation by phosphorylation. Further, Ugd phosphorylation by Wzc or Etk was shown to serve distinct physiological purposes. Phosphorylation of Ugd by Wzc was found to participate in the regulation of the amount of the exopolysaccharide colanic acid, whereas Etk-mediated Ugd phosphorylation appeared to participate in the resistance of E. coli to the antibiotic polymyxin. CONCLUSIONS/SIGNIFICANCE:Ugd phosphorylation seems to be at the junction between two distinct biosynthetic pathways, illustrating the regulatory potential of tyrosine phosphorylation in bacterial physiology

    Anal and oral human papillomavirus (HPV) infection in HIV-infected subjects in northern Italy: a longitudinal cohort study among men who have sex with men

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A study including 166 subjects was performed to investigate the frequency and persistence over a 6-month interval of concurrent oral and anal Human Papillomavirus (HPV) infections in Human Immunodeficiency Virus (HIV)-infected men who have sex with men (MSM).</p> <p>Methods</p> <p>Patients with no previously documented HPV-related anogenital lesion/disease were recruited to participate in a longitudinal study. Polymerase chain reaction (PCR) was performed to detect HPV from oral and anal swabs and to detect Human Herpes Virus 8 (HHV-8) DNA in saliva on 2 separate specimen series, one collected at baseline and the other collected 6 months later. A multivariate logistic analysis was performed using anal HPV infection as the dependent variable versus a set of covariates: age, HIV plasma viral load, CD4+ count, hepatitis B virus (HBV) serology, hepatitis C virus (HCV) serology, syphilis serology and HHV-8 viral shedding. A stepwise elimination of covariates with a p-value > 0.1 was performed.</p> <p>Results</p> <p>The overall prevalence of HPV did not vary significantly between the baseline and the follow-up, either in the oral (20.1 and 21.3%, respectively) or the anal specimens (88.6 and 86.3%). The prevalence of high-risk (HR) genotypes among the HPV-positive specimens was similar in the oral and anal infections (mean values 24.3% and 20.9%). Among 68 patients with either a HR, low-risk (LR) or undetermined genotype at baseline, 75% had persistent HPV and the persistence rates were 71.4% in HR infections and 76.7% in LR infections. There was a lack of genotype concordance between oral and anal HPV samples. The prevalence of HR HPV in anus appeared to be higher in the younger patients, peaking (> 25%) in the 43-50 years age group. A decrease of the high level of anal prevalence of all genotypes of HPV in the patients > 50 years was evident. HHV-8 oral shedding was positively related to HPV anal infection (p = 0.0046). A significant correlation was found between the persistence of HHV-8 shedding and HIV viral load by logistic bivariate analysis (Odds Ratio of HHV-8 persistence for 1-log increase of HIV viral load = 1.725 ± 0.397, p = 0.018).</p> <p>Conclusions</p> <p>A high prevalence of HPV infection was found in our cohort of HIV-infected MSM, with a negative correlation between anal HPV infection and CD4 cell count.</p

    Wild food plants of popular use in Sicily

    Get PDF
    In the present work the authors report the result of their food ethnobotanical researches, which have been carried out in Sicily during the last thirty years. Data concerning 188 wild species used in the traditional Sicilian cuisine are reported. The authors underline those species that are partially or completely unknown for their culinary use and they illustrate other species that local inhabitants suggested in the prevention or treatment of symptomatologies caused by a refined diet, poor in vegetables. These data want to contribute to avoid the loss of traditional knowledge on uses and recipes concerning wild food botanicals, and to encourage further studies for those species that have not yet been sufficiently researched in their food chemical and nutritional profile. These studies may also suggest new applications for a few botanicals in medico-nutritional fields. The work includes also a short review of the seaweeds and mushrooms traditionally gathered and consumed in Sicily

    Dopamine acting at D1-like, D2-like and α1-adrenergic receptors differentially modulates theta and gamma oscillatory activity in primary motor cortex

    Get PDF
    The loss of dopamine (DA) in Parkinson’s is accompanied by the emergence of exaggerated theta and beta frequency neuronal oscillatory activity in the primary motor cortex (M1) and basal ganglia. DA replacement therapy or deep brain stimulation reduces the power of these oscillations and this is coincident with an improvement in motor performance implying a causal relationship. Here we provide in vitro evidence for the differential modulation of theta and gamma activity in M1 by DA acting at receptors exhibiting conventional and non-conventional DA pharmacology. Recording local field potentials in deep layer V of rat M1, co-application of carbachol (CCh, 5 μM) and kainic acid (KA, 150 nM) elicited simultaneous oscillations at a frequency of 6.49 ± 0.18 Hz (theta, n = 84) and 34.97 ± 0.39 Hz (gamma, n = 84). Bath application of DA resulted in a decrease in gamma power with no change in theta power. However, application of either the D1-like receptor agonist SKF38393 or the D2-like agonist quinpirole increased the power of both theta and gamma suggesting that the DA-mediated inhibition of oscillatory power is by action at other sites other than classical DA receptors. Application of amphetamine, which promotes endogenous amine neurotransmitter release, or the adrenergic α1-selective agonist phenylephrine mimicked the action of DA and reduced gamma power, a result unaffected by prior co-application of D1 and D2 receptor antagonists SCH23390 and sulpiride. Finally, application of the α1-adrenergic receptor antagonist prazosin blocked the action of DA on gamma power suggestive of interaction between α1 and DA receptors. These results show that DA mediates complex actions acting at dopamine D1-like and D2-like receptors, α1 adrenergic receptors and possibly DA/α1 heteromultimeric receptors to differentially modulate theta and gamma activity in M1
    corecore