184 research outputs found

    Interstellar Turbulence II: Implications and Effects

    Full text link
    Interstellar turbulence has implications for the dispersal and mixing of the elements, cloud chemistry, cosmic ray scattering, and radio wave propagation through the ionized medium. This review discusses the observations and theory of these effects. Metallicity fluctuations are summarized, and the theory of turbulent transport of passive tracers is reviewed. Modeling methods, turbulent concentration of dust grains, and the turbulent washout of radial abundance gradients are discussed. Interstellar chemistry is affected by turbulent transport of various species between environments with different physical properties and by turbulent heating in shocks, vortical dissipation regions, and local regions of enhanced ambipolar diffusion. Cosmic rays are scattered and accelerated in turbulent magnetic waves and shocks, and they generate turbulence on the scale of their gyroradii. Radio wave scintillation is an important diagnostic for small scale turbulence in the ionized medium, giving information about the power spectrum and amplitude of fluctuations. The theory of diffraction and refraction is reviewed, as are the main observations and scintillation regions.Comment: 46 pages, 2 figures, submitted to Annual Reviews of Astronomy and Astrophysic

    Identification of Mycobacterium tuberculosis-Specific Th1, Th17 and Th22 Cells Using the Expression of CD40L in Tuberculous Pleurisy

    Get PDF
    Important advances have been made in the immunodiagnosis of tuberculosis (TB) based on the detection of Mycobacterium tuberculosis (MTB)-specific T cells. However, the sensitivity and specificity of the immunological approach are relatively low because there are no specific markers for antigen-specific Th cells, and some of the Th cells that do not produce cytokines can be overlooked using this approach. In this study, we found that MTB-specific peptides of ESAT-6/CFP-10 can stimulate the expression of CD40L specifically in CD4+ T cells but not other cells from pleural fluid cells (PFCs) in patients with tuberculous pleurisy (TBP). CD4+CD40L+ but not CD4+CD40L− T cells express IFN-γ, IL-2, TNF-α, IL-17 or IL-22 after stimulation with MTB-specific peptides. In addition, CD4+CD40L+ T cells were found to be mostly polyfunctional T cells that simultaneously produce IFN-γ, IL-2 and TNF-α and display an effector or effector memory phenotype (CD45RA−CD45RO+CCR7−CD62L−ICOS−). To determine the specificity of CD4+CD40L+ T cells, we incubated PFCs with ESTA-6/CFP-10 peptides and sorted live CD4+CD40L+ and CD4+CD40L− T cells by flow cytometry. We further demonstrated that sorted CD4+CD40L+, but not CD4+CD40L− fractions, principally produced IFN-γ, IL-2, TNF-α, IL-17 and IL-22 following restimulation with ESTA-6/CFP-10 peptides. Taken together, our data indicate that the expression of CD40L on MTB-specific CD4+ T cells could be a good marker for the evaluation and isolation of MTB-specific Th cells and might also be useful in the diagnosis of TB

    Cancer metabolism: current perspectives and future directions

    Get PDF
    Cellular metabolism influences life and death decisions. An emerging theme in cancer biology is that metabolic regulation is intricately linked to cancer progression. In part, this is due to the fact that proliferation is tightly regulated by availability of nutrients. Mitogenic signals promote nutrient uptake and synthesis of DNA, RNA, proteins and lipids. Therefore, it seems straight-forward that oncogenes, that often promote proliferation, also promote metabolic changes. In this review we summarize our current understanding of how ‘metabolic transformation' is linked to oncogenic transformation, and why inhibition of metabolism may prove a cancer′s ‘Achilles' heel'. On one hand, mutation of metabolic enzymes and metabolic stress sensors confers synthetic lethality with inhibitors of metabolism. On the other hand, hyperactivation of oncogenic pathways makes tumors more susceptible to metabolic inhibition. Conversely, an adequate nutrient supply and active metabolism regulates Bcl-2 family proteins and inhibits susceptibility to apoptosis. Here, we provide an overview of the metabolic pathways that represent anti-cancer targets and the cell death pathways engaged by metabolic inhibitors. Additionally, we will detail the similarities between metabolism of cancer cells and metabolism of proliferating cells
    • …
    corecore