61 research outputs found

    Sugarcane genes associated with sucrose content

    Get PDF
    <p>Abstract</p> <p>Background -</p> <p>Sucrose content is a highly desirable trait in sugarcane as the worldwide demand for cost-effective biofuels surges. Sugarcane cultivars differ in their capacity to accumulate sucrose and breeding programs routinely perform crosses to identify genotypes able to produce more sucrose. Sucrose content in the mature internodes reach around 20% of the culms dry weight. Genotypes in the populations reflect their genetic program and may display contrasting growth, development, and physiology, all of which affect carbohydrate metabolism. Few studies have profiled gene expression related to sugarcane's sugar content. The identification of signal transduction components and transcription factors that might regulate sugar accumulation is highly desirable if we are to improve this characteristic of sugarcane plants.</p> <p>Results -</p> <p>We have evaluated thirty genotypes that have different Brix (sugar) levels and identified genes differentially expressed in internodes using cDNA microarrays. These genes were compared to existing gene expression data for sugarcane plants subjected to diverse stress and hormone treatments. The comparisons revealed a strong overlap between the drought and sucrose-content datasets and a limited overlap with ABA signaling. Genes associated with sucrose content were extensively validated by qRT-PCR, which highlighted several protein kinases and transcription factors that are likely to be regulators of sucrose accumulation. The data also indicate that aquaporins, as well as lignin biosynthesis and cell wall metabolism genes, are strongly related to sucrose accumulation. Moreover, sucrose-associated genes were shown to be directly responsive to short term sucrose stimuli, confirming their role in sugar-related pathways.</p> <p>Conclusion -</p> <p>Gene expression analysis of sugarcane populations contrasting for sucrose content indicated a possible overlap with drought and cell wall metabolism processes and suggested signaling and transcriptional regulators to be used as molecular markers in breeding programs. Transgenic research is necessary to further clarify the role of the genes and define targets useful for sugarcane improvement programs based on transgenic plants.</p

    Mechanisms of T cell organotropism

    Get PDF
    F.M.M.-B. is supported by the British Heart Foundation, the Medical Research Council of the UK and the Gates Foundation

    Development and validation of an assay for measurement of leptin in pig saliva

    No full text
    BACKGROUND: Leptin has been measured in human in saliva samples. However, the low leptin concentration found in this biological fluid makes necessary the use of high sensitive methods. To the authors’ knowledge, leptin has not been measured in porcine saliva. This study aimed to develop and validate a time-resolved immunofluorometric assay (TR-IFMA) for salivary leptin measurements in pigs, using a species-specific antibody, and to evaluate how salivary leptin changes with body weight, food ingestion, and in experimental models of stress and inflammation. Polyclonal antibodies were produced in rabbits immunized with recombinant porcine leptin and used to develop a sandwich TR-IFMA. RESULTS: The method had intra-assay and inter-assay coefficients of variation lower than 10 and 16 %, respectively. The assay was accurate and the low limit of detection allowed detection of leptin in all analyzed samples. Salivary leptin concentration was positively correlated to body weight (r = 0.58, P = 0.01) and increased after food ingestion (P < 0.001) and after 24 h of applying a model of experimental inflammation by turpentine injection (P < 0.05). However, it did not significantly change after a model of acute stress consisting of a nose snare restraining. CONCLUSION: These results indicate that the developed assay can measure leptin in porcine saliva in a reliable way and that leptin in saliva is influenced by body weight, food ingestion and inflammation
    corecore