96 research outputs found

    Intertwined αβ Spectrin Meeting Helical Actin Protofilament in the Erythrocyte Membrane Skeleton: Wrap-Around vs. Point-Attachment

    Get PDF
    Our 3-D model for a junctional complex (JC) in the erythrocyte membrane skeleton proposed that the helical actin protofilament functions as a mechanical axis for three pairs of αβ spectrin (Sp), and each pair wraps around the protofilament in a back-to-back fashion. The distal end of each Sp is further associated with the lipid bilayer by a suspension complex (SC). Here, we detail how splitting and rejoining of αβ Sp around a protofilament may form a loop that sustains and equilibrates tension. Sequential association of β and α Sp solves the challenge of constructing multiple loops along the protofilament, and topological connection facilitates their re-association. The wrap-around model minimizes the strain of the actin binding site on β Sp due to tension, redirection, or sliding of intertwined Sp. Pairing Sp balances the opposing forces and provides a mechanism for elastic recovery. The wrap-around junction thus provides mechanical advantages over a point-attachment junction in maintaining the integrity and functionality of the network. Severing α or β Sp may convert a wrapping-around junction to a point-attachment junction. In that case, a “bow up” motion of JC during deformation may disturb or flip the overlaid lipid bilayer, and mark stressed erythrocytes for phagocytosis

    GAIA: a gram-based interaction analysis tool – an approach for identifying interacting domains in yeast

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein-Protein Interactions (PPIs) play important roles in many biological functions. Protein domains, which are defined as independently folding structural blocks of proteins, physically interact with each other to perform these biological functions. Therefore, the identification of Domain-Domain Interactions (DDIs) is of great biological interests because it is generally accepted that PPIs are mediated by DDIs. As a result, much effort has been put on the prediction of domain pair interactions based on computational methods. Many DDI prediction tools using PPIs network and domain evolution information have been reported. However, tools that combine the primary sequences, domain annotations, and structural annotations of proteins have not been evaluated before.</p> <p>Results</p> <p>In this study, we report a novel approach called Gram-bAsed Interaction Analysis (GAIA). GAIA extracts peptide segments that are composed of fixed length of continuous amino acids, called n-grams (where n is the number of amino acids), from the annotated domain and DDI data set in <it>Saccharomyces cerevisiae </it>(budding yeast) and identifies a list of n-grams that may contribute to DDIs and PPIs based on the frequencies of their appearance. GAIA also reports the coordinate position of gram pairs on each interacting domain pair. We demonstrate that our approach improves on other DDI prediction approaches when tested against a gold-standard data set and achieves a true positive rate of 82% and a false positive rate of 21%. We also identify a list of 4-gram pairs that are significantly over-represented in the DDI data set and may mediate PPIs.</p> <p>Conclusion</p> <p>GAIA represents a novel and reliable way to predict DDIs that mediate PPIs. Our results, which show the localizations of interacting grams/hotspots, provide testable hypotheses for experimental validation. Complemented with other prediction methods, this study will allow us to elucidate the interactome of cells.</p

    Intrinsic Capability of Budding Yeast Cofilin to Promote Turnover of Tropomyosin-Bound Actin Filaments

    Get PDF
    The ability of actin filaments to function in cell morphogenesis and motility is closely coupled to their dynamic properties. Yeast cells contain two prominent actin structures, cables and patches, both of which are rapidly assembled and disassembled. Although genetic studies have shown that rapid actin turnover in patches and cables depends on cofilin, how cofilin might control cable disassembly remains unclear, because tropomyosin, a component of actin cables, is thought to protect actin filaments against the depolymerizing activity of ADF/cofilin. We have identified cofilin as a yeast tropomyosin (Tpm1) binding protein through Tpm1 affinity column and mass spectrometry. Using a variety of assays, we show that yeast cofilin can efficiently depolymerize and sever yeast actin filaments decorated with either Tpm1 or mouse tropomyosins TM1 and TM4. Our results suggest that yeast cofilin has the intrinsic ability to promote actin cable turnover, and that the severing activity may rely on its ability to bind Tpm1

    The serologically defined colon cancer antigen-3 (SDCCAG3) is involved in the regulation of ciliogenesis

    Get PDF
    A primary cilium is present on most eukaryotic cells and represents a specialized organelle dedicated to signal transduction and mechanosensing. Defects in cilia function are the cause for several human diseases called ciliopathies. The serologically defined colon cancer antigen-3 (SDCCAG3) is a recently described novel endosomal protein mainly localized at early and recycling endosomes and interacting with several components of membrane trafficking pathways. Here we describe localization of SDCCAG3 to the basal body of primary cilia. Furthermore, we demonstrate that decreased expression levels of SDCCAG3 correlate with decreased ciliary length and a reduced percentage of ciliated cells. We show that SDCCAG3 interacts with the intraflagellar transport protein 88 (IFT88), a crucial component of ciliogenesis and intraciliary transport. Mapping experiments revealed that the N-terminus of SDCCAG3 mediates this interaction by binding to a region within IFT88 comprising several tetratricopeptide (TRP) repeats. Finally, we demonstrate that SDCCAG3 is important for ciliary localization of the membrane protein Polycystin-2, a protein playing an important role in the formation of polycystic kidney disease, but not for Rab8 another ciliary protein. Together these data suggest a novel role for SDCCAG3 in ciliogenesis and in localization of cargo to primary cilia

    Does switching from oral extended-release methylphenidate to the methylphenidate transdermal system affect health-related quality-of-life and medication satisfaction for children with attention-deficit/hyperactivity disorder?

    Get PDF
    Background: To evaluate health-related quality of life (HRQL) and medication satisfaction after switching from a stable dose of oral extended-release methylphenidate (ER-MPH) to methylphenidate transdermal system (MTS) via a dose-transition schedule in children with attention-deficit/hyperactivity disorder (ADHD). Methods: In a 4-week, multisite, open-label study, 171 children (164 in the intent-to-treat [ITT] population) aged 6-12 years diagnosed with ADHD abruptly switched from a stable dose of oral ER-MPH to MTS nominal dosages of 10, 15, 20, and 30 mg using a predefined dose-transition schedule. Subjects remained on the scheduled dose for the first week, after which the dose was then titrated to an optimal effect. The ADHD Impact Module-Children (AIM-C), a disease-specific validated HRQL survey instrument measuring child and family impact, was used to assess the impact of ADHD symptoms on the lives of children and their families at baseline and study endpoint. Satisfaction with MTS use was assessed via a Medication Satisfaction Survey (MSS) at study endpoint. Both the AIM-C and MSS were completed by a caregiver (parent/legally authorized representative). Tolerability was monitored by spontaneous adverse event (AE) reporting. Results: AIM-C child and family HRQL mean scores were above the median possible score at baseline and were further improved at endpoint across all MTS doses. Similar improvements were noted for behavior, missed doses, worry, and economic impact AIM-C item scores. Overall, 93.8% of caregivers indicated a high level of satisfaction with their child's use of the study medication. The majority of treatment-emergent AEs (> 98%) were mild to moderate in intensity, and the most commonly reported AEs included headache, decreased appetite, insomnia, and abdominal pain. Seven subjects discontinued the study due to intolerable AEs (n = 3) and application site reactions (n = 4). Conclusion: This study demonstrates that MTS, when carefully titrated to optimal dose, may further improve child and family HRQL, as well as behavioral, medication worry, and economic impact item scores, as measured by the AIM-C in subjects switching to MTS from a stable dose of routinely prescribed oral ER-MPH after a short treatment period. Furthermore, following the abrupt conversion from oral ER-MPH to MTS, the majority of caregivers reported being highly satisfied with MTS as a treatment option for their children with ADHD. Trial Registration: NCT0015198

    SNX3 controls Wingless/Wnt secretion through regulating retromer-dependent recycling of Wntless

    Get PDF
    Drosophila Wingless (Wg) acts as a morphogen during development. Wg secretion is controlled by a seven-pass transmembrane cargo Wntless (Wls). We have recently identified retromer as a key regulator involved in Wls trafficking. As sorting nexin (SNX) molecules are essential components of the retromer complex, we hypothesized that specific SNX(s) is required for retromer-mediated Wnt secretion. Here, we generated Drosophila mutants for all of the eight snx members, and identified Drosophila SNX3 (DSNX3) as an essential molecule required for Wg secretion. We show that Wg secretion and its signaling activity are defective in Dsnx3 mutant clones in wing discs. Wg levels in the culture medium of Dsnx3-depleted S2 cells are also markedly reduced. Importantly, Wls levels are strikingly reduced in Dsnx3 mutant cells, and overexpression of Wls can rescue the Wg secretion defect observed in Dsnx3 mutant cells. Moreover, DSNX3 can interact with the retromer component Vps35, and co-localize with Vps35 in early endosomes. These data indicate that DSNX3 regulates Wg secretion via retromer-dependent Wls recycling. In contrast, we found that Wg secretion is not defective in cells mutant for Drosophila snx1 and snx6, two components of the classical retromer complex. Ectopic expression of DSNX1 or DSNX6 fails to rescue the Wg secretion defect in Dsnx3 mutant wing discs and in Dsnx3 dsRNA-treated S2 cells. These data demonstrate the specificity of the DSNX3-retromer complex in Wls recycling. Together, our findings suggest that DSNX3 acts as a cargo-specific component of retromer, which is required for endocytic recycling of Wls and Wg/Wnt secretion

    TNFα Cooperates with IFN-γ to Repress Bcl-xL Expression to Sensitize Metastatic Colon Carcinoma Cells to TRAIL-mediated Apoptosis

    Get PDF
    BACKGROUND: TNF-related apoptosis-inducing ligand (TRAIL) is an immune effector molecule that functions as a selective anti-tumor agent. However, tumor cells, especially metastatic tumor cells often exhibit a TRAIL-resistant phenotype, which is currently a major impediment in TRAIL therapy. The aim of this study is to investigate the synergistic effect of TNFα and IFN-γ in sensitizing metastatic colon carcinoma cells to TRAIL-mediated apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: The efficacy and underlying molecular mechanism of cooperation between TNFα and IFN-γ in sensitizing metastatic colon carcinoma cells to TRAIL-mediated apoptosis were examined. The functional significance of TNFα- and IFN-γ-producing T lymphocyte immunotherapy in combination with TRAIL therapy in suppression of colon carcinoma metastasis was determined in an experimental metastasis mouse model. We observed that TNFα or IFN-γ alone exhibits minimal sensitization effects, but effectively sensitized metastatic colon carcinoma cells to TRAIL-induced apoptosis when used in combination. TNFα and IFN-γ cooperate to repress Bcl-xL expression, whereas TNFα represses Survivin expression in the metastatic colon carcinoma cells. Silencing Bcl-xL expression significantly increased the metastatic colon carcinoma cell sensitivity to TRAIL-induced apoptosis. Conversely, overexpression of Bcl-xL significantly decreased the tumor cell sensitivity to TRAIL-induced apoptosis. Furthermore, TNFα and IFN-γ also synergistically enhanced TRAIL-induced caspase-8 activation. TNFα and IFN-γ was up-regulated in activated primary and tumor-specific T cells. TRAIL was expressed in tumor-infiltrating immune cells in vivo, and in tumor-specific cytotoxic T lymphocytes (CTL) ex vivo. Consequently, TRAIL therapy in combination with TNFα/IFN-γ-producing CTL adoptive transfer immunotherapy effectively suppressed colon carcinoma metastasis in vivo. CONCLUSIONS/SIGNIFICANCE: TNFα and IFN-γ cooperate to overcome TRAIL resistance at least partially through enhancing caspase 8 activation and repressing Bcl-xL expression. Combined CTL immunotherapy and TRAIL therapy hold great promise for further development for the treatment of metastatic colorectal cancer

    Retriever is a multiprotein complex for retromer-independent endosomal cargo recycling

    Get PDF
    Following endocytosis into the endosomal network, integral membrane proteins undergo sorting for lysosomal degradation or are retrieved and recycled back to the cell surface. Here we describe the discovery of an ancient and conserved multiprotein complex that orchestrates cargo retrieval and recycling and, importantly, is biochemically and functionally distinct from the established retromer pathway. We have called this complex 'retriever'; it is a heterotrimer composed of DSCR3, C16orf62 and VPS29, and bears striking similarity to retromer. We establish that retriever associates with the cargo adaptor sorting nexin 17 (SNX17) and couples to CCC (CCDC93, CCDC22, COMMD) and WASH complexes to prevent lysosomal degradation and promote cell surface recycling of α5β1 integrin. Through quantitative proteomic analysis, we identify over 120 cell surface proteins, including numerous integrins, signalling receptors and solute transporters, that require SNX17-retriever to maintain their surface levels. Our\ua0identification of retriever establishes a major endosomal retrieval and recycling pathway
    corecore