47 research outputs found

    Visual Snow Syndrome Improves With Modulation of Resting-State Functional MRI Connectivity After Mindfulness-Based Cognitive Therapy: An Open-Label Feasibility Study

    Get PDF
    BACKGROUND: Visual snow syndrome (VSS) is associated with functional connectivity (FC) dysregulation of visual networks (VNs). We hypothesized that mindfulness-based cognitive therapy, customized for visual symptoms (MBCT-vision), can treat VSS and modulate dysfunctional VNs. METHODS: An open-label feasibility study for an 8-week MBCT-vision treatment program was conducted. Primary (symptom severity; impact on daily life) and secondary (WHO-5; CORE-10) outcomes at Week 9 and Week 20 were compared with baseline. Secondary MRI outcomes in a subcohort compared resting-state functional and diffusion MRI between baseline and Week 20. RESULTS: Twenty-one participants (14 male participants, median 30 years, range 22-56 years) recruited from January 2020 to October 2021. Two (9.5%) dropped out. Self-rated symptom severity (0-10) improved: baseline (median [interquartile range (IQR)] 7 [6-8]) vs Week 9 (5.5 [3-7], P = 0.015) and Week 20 (4 [3-6], P < 0.001), respectively. Self-rated impact of symptoms on daily life (0-10) improved: baseline (6 [5-8]) vs Week 9 (4 [2-5], P = 0.003) and Week 20 (2 [1-3], P < 0.001), respectively. WHO-5 Wellbeing (0-100) improved: baseline (median [IQR] 52 [36-56]) vs Week 9 (median 64 [47-80], P = 0.001) and Week 20 (68 [48-76], P < 0.001), respectively. CORE-10 Distress (0-40) improved: baseline (15 [12-20]) vs Week 9 (12.5 [11-16.5], P = 0.003) and Week 20 (11 [10-14], P = 0.003), respectively. Within-subject fMRI analysis found reductions between baseline and Week 20, within VN-related FC in the i) left lateral occipital cortex (size = 82 mL, familywise error [FWE]-corrected P value = 0.006) and ii) left cerebellar lobules VIIb/VIII (size = 65 mL, FWE-corrected P value = 0.02), and increases within VN-related FC in the precuneus/posterior cingulate cortex (size = 69 mL, cluster-level FWE-corrected P value = 0.02). CONCLUSIONS: MBCT-vision was a feasible treatment for VSS, improved symptoms and modulated FC of VNs. This study also showed proof-of-concept for intensive mindfulness interventions in the treatment of neurological conditions

    ADvanced IMage Algebra (ADIMA): a novel method for depicting multiple sclerosis lesion heterogeneity, as demonstrated by quantitative MRI.

    Get PDF
    BACKGROUND: There are modest correlations between multiple sclerosis (MS) disability and white matter lesion (WML) volumes, as measured by T2-weighted (T2w) magnetic resonance imaging (MRI) scans (T2-WML). This may partly reflect pathological heterogeneity in WMLs, which is not apparent on T2w scans. OBJECTIVE: To determine if ADvanced IMage Algebra (ADIMA), a novel MRI post-processing method, can reveal WML heterogeneity from proton-density weighted (PDw) and T2w images. METHODS: We obtained conventional PDw and T2w images from 10 patients with relapsing-remitting MS (RRMS) and ADIMA images were calculated from these. We classified all WML into bright (ADIMA-b) and dark (ADIMA-d) sub-regions, which were segmented. We obtained conventional T2-WML and T1-WML volumes for comparison, as well as the following quantitative magnetic resonance parameters: magnetisation transfer ratio (MTR), T1 and T2. Also, we assessed the reproducibility of the segmentation for ADIMA-b, ADIMA-d and T2-WML. RESULTS: Our study's ADIMA-derived volumes correlated with conventional lesion volumes (p < 0.05). ADIMA-b exhibited higher T1 and T2, and lower MTR than the T2-WML (p < 0.001). Despite the similarity in T1 values between ADIMA-b and T1-WML, these regions were only partly overlapping with each other. ADIMA-d exhibited quantitative characteristics similar to T2-WML; however, they were only partly overlapping. Mean intra- and inter-observer coefficients of variation for ADIMA-b, ADIMA-d and T2-WML volumes were all < 6 % and < 10 %, respectively. CONCLUSION: ADIMA enabled the simple classification of WML into two groups having different quantitative magnetic resonance properties, which can be reproducibly distinguished

    Patterns of inflammation, microstructural alterations, and sodium accumulation define multiple sclerosis subtypes after 15 years from onset

    Get PDF
    INTRODUCTION: Conventional MRI is routinely used for the characterization of pathological changes in multiple sclerosis (MS), but due to its lack of specificity is unable to provide accurate prognoses, explain disease heterogeneity and reconcile the gap between observed clinical symptoms and radiological evidence. Quantitative MRI provides measures of physiological abnormalities, otherwise invisible to conventional MRI, that correlate with MS severity. Analyzing quantitative MRI measures through machine learning techniques has been shown to improve the understanding of the underlying disease by better delineating its alteration patterns. METHODS: In this retrospective study, a cohort of healthy controls (HC) and MS patients with different subtypes, followed up 15 years from clinically isolated syndrome (CIS), was analyzed to produce a multi-modal set of quantitative MRI features encompassing relaxometry, microstructure, sodium ion concentration, and tissue volumetry. Random forest classifiers were used to train a model able to discriminate between HC, CIS, relapsing remitting (RR) and secondary progressive (SP) MS patients based on these features and, for each classification task, to identify the relative contribution of each MRI-derived tissue property to the classification task itself. RESULTS AND DISCUSSION: Average classification accuracy scores of 99 and 95% were obtained when discriminating HC and CIS vs. SP, respectively; 82 and 83% for HC and CIS vs. RR; 76% for RR vs. SP, and 79% for HC vs. CIS. Different patterns of alterations were observed for each classification task, offering key insights in the understanding of MS phenotypes pathophysiology: atrophy and relaxometry emerged particularly in the classification of HC and CIS vs. MS, relaxometry within lesions in RR vs. SP, sodium ion concentration in HC vs. CIS, and microstructural alterations were involved across all tasks

    Fully automated segmentation of the cervical cord from T1-weighted MRI using PropSeg: Application to multiple sclerosis.

    Get PDF
    Spinal cord (SC) atrophy, i.e. a reduction in the SC cross-sectional area (CSA) over time, can be measured by means of image segmentation using magnetic resonance imaging (MRI). However, segmentation methods have been limited by factors relating to reproducibility or sensitivity to change. The purpose of this study was to evaluate a fully automated SC segmentation method (PropSeg), and compare this to a semi-automated active surface (AS) method, in healthy controls (HC) and people with multiple sclerosis (MS). MRI data from 120 people were retrospectively analysed; 26 HC, 21 with clinically isolated syndrome, 26 relapsing remitting MS, 26 primary and 21 secondary progressive MS. MRI data from 40 people returning after one year were also analysed. CSA measurements were obtained within the cervical SC. Reproducibility of the measurements was assessed using the intraclass correlation coefficient (ICC). A comparison between mean CSA changes obtained with the two methods over time was performed using multivariate structural equation regression models. Associations between CSA measures and clinical scores were investigated using linear regression models. Compared to the AS method, the reproducibility of CSA measurements obtained with PropSeg was high, both in patients and in HC, with ICC > 0.98 in all cases. There was no significant difference between PropSeg and AS in terms of detecting change over time. Furthermore, PropSeg provided measures that correlated with physical disability, similar to the AS method. PropSeg is a time-efficient and reliable segmentation method, which requires no manual intervention, and may facilitate large multi-centre neuroprotective trials in progressive MS

    Aberrant olfactory network functional connectivity in people with olfactory dysfunction following COVID-19 infection: an exploratory, observational study

    Get PDF
    BACKGROUND: Olfactory impairments and anosmia from COVID-19 infection typically resolve within 2-4 weeks, although in some cases, symptoms persist longer. COVID-19-related anosmia is associated with olfactory bulb atrophy, however, the impact on cortical structures is relatively unknown, particularly in those with long-term symptoms. METHODS: In this exploratory, observational study, we studied individuals who experienced COVID-19-related anosmia, with or without recovered sense of smell, and compared against individuals with no prior COVID-19 infection (confirmed by antibody testing, all vaccine naïve). MRI Imaging was carried out between the 15th July and 17th November 2020 at the Queen Square House Clinical Scanning Facility, UCL, United Kingdom. Using functional magnetic resonance imaging (fMRI) and structural imaging, we assessed differences in functional connectivity (FC) between olfactory regions, whole brain grey matter (GM) cerebral blood flow (CBF) and GM density. FINDINGS: Individuals with anosmia showed increased FC between the left orbitofrontal cortex (OFC), visual association cortex and cerebellum and FC reductions between the right OFC and dorsal anterior cingulate cortex compared to those with no prior COVID-19 infection (p < 0.05, from whole brain statistical parametric map analysis). Individuals with anosmia also showed greater CBF in the left insula, hippocampus and ventral posterior cingulate when compared to those with resolved anosmia (p < 0.05, from whole brain statistical parametric map analysis). INTERPRETATION: This work describes, for the first time to our knowledge, functional differences within olfactory areas and regions involved in sensory processing and cognitive functioning. This work identifies key areas for further research and potential target sites for therapeutic strategies. FUNDING: This study was funded by the National Institute for Health and Care Research and supported by the Queen Square Scanner business case

    Systematic review of antiepileptic drugs’ safety and effectiveness in feline epilepsy

    Get PDF
    Understanding the efficacy and safety profile of antiepileptic drugs (AEDs) in feline epilepsy is a crucial consideration for managing this important brain disease. However, there is a lack of information about the treatment of feline epilepsy and therefore a systematic review was constructed to assess current evidence for the AEDs’ efficacy and tolerability in cats. The methods and materials of our former systematic reviews in canine epilepsy were mostly mirrored for the current systematic review in cats. Databases of PubMed, CAB Direct and Google scholar were searched to detect peer-reviewed studies reporting efficacy and/or adverse effects of AEDs in cats. The studies were assessed with regards to their quality of evidence, i.e. study design, study population, diagnostic criteria and overall risk of bias and the outcome measures reported, i.e. prevalence and 95% confidence interval of the successful and affected population in each study and in total

    Nitrosative and Oxidative Stresses Contribute to Post-Ischemic Liver Injury Following Severe Hemorrhagic Shock: The Role of Hypoxemic Resuscitation

    Get PDF
    Purpose: Hemorrhagic shock and resuscitation is frequently associated with liver ischemia-reperfusion injury. The aim of the study was to investigate whether hypoxemic resuscitation attenuates liver injury. Methods: Anesthetized, mechanically ventilated New Zealand white rabbits were exsanguinated to a mean arterial pressure of 30 mmHg for 60 minutes. Resuscitation under normoxemia (Normox-Res group, n = 16, PaO2 = 95–105 mmHg) or hypoxemia (Hypox-Res group, n = 15, PaO 2 = 35–40 mmHg) followed, modifying the FiO 2. Animals not subjected to shock constituted the sham group (n = 11, PaO 2 = 95–105 mmHg). Indices of the inflammatory, oxidative and nitrosative response were measured and histopathological and immunohistochemical studies of the liver were performed. Results: Normox-Res group animals exhibited increased serum alanine aminotransferase, tumor necrosis factor- alpha, interleukin (IL)-1b and IL-6 levels compared with Hypox-Res and sham groups. Reactive oxygen species generation, malondialdehyde formation and myeloperoxidase activity were all elevated in Normox-Res rabbits compared with Hypox-Res and sham groups. Similarly, endothelial NO synthase and inducible NO synthase mRNA expression was up-regulated and nitrotyrosine immunostaining increased in animals resuscitated normoxemically, indicating a more intense nitrosative stress. Hypox-Res animals demonstrated a less prominent histopathologic injury which was similar to sham animals. Conclusions: Hypoxemic resuscitation prevents liver reperfusion injury through attenuation of the inflammatory respons

    Altered Arterial Stiffness and Subendocardial Viability Ratio in Young Healthy Light Smokers after Acute Exercise

    Get PDF
    Studies showed that long-standing smokers have stiffer arteries at rest. However, the effect of smoking on the ability of the vascular system to respond to increased demands (physical stress) has not been studied. The purpose of this study was to estimate the effect of smoking on arterial stiffness and subendocardial viability ratio, at rest and after acute exercise in young healthy individuals.Healthy light smokers (n = 24, pack-years = 2.9) and non-smokers (n = 53) underwent pulse wave analysis and carotid-femoral pulse wave velocity measurements at rest, and 2, 5, 10, and 15 minutes following an exercise test to exhaustion. Smokers were tested, 1) after 12h abstinence from smoking (chronic condition) and 2) immediately after smoking one cigarette (acute condition). At rest, chronic smokers had higher augmentation index and lower aortic pulse pressure than non-smokers, while subendocardial viability ratio was not significantly different. Acute smoking increased resting augmentation index and decreased subendocardial viability ratio compared with non-smokers, and decreased subendocardial viability ratio compared with the chronic condition. After exercise, subendocardial viability ratio was lower, and augmentation index and aortic pulse pressure were higher in non-smokers than smokers in the chronic and acute conditions. cfPWV rate of recovery of was greater in non-smokers than chronic smokers after exercise. Non-smokers were also able to achieve higher workloads than smokers in both conditions.Chronic and acute smoking appears to diminish the vascular response to physical stress. This can be seen as an impaired 'vascular reserve' or a blunted ability of the blood vessels to accommodate the changes required to achieve higher workloads. These changes were noted before changes in arterial stiffness or subendocardial viability ratio occurred at rest. Even light smoking in young healthy individuals appears to have harmful effects on vascular function, affecting the ability of the vascular bed to respond to increased demands

    Low HDL Cholesterol, Smoking and IL-13 R130Q Polymorphism are Associated with Myocardial Infarction in Greek Cypriot Males. A Pilot Study

    Get PDF
    This study was carried out in Greek Cypriot males to identify risk factors that predispose to myocardial infarction (MI). Genetic and lipid risk factors were investigated for the first time in a Greek Cypriot male case-control study.Contrary to other studies, mean low density lipoprotein cholesterol did not differ between cases and controls. High density lipoprotein cholesterol on the other hand, although within normal range in cases and controls, was significantly higher in the control population. In agreement with many other studies, smoking was significantly more prevalent in cases compared with controls. In pooled cases and controls, smokers had a significantly lower HDL-C level compared with non-smokers. The frequency of the IL-13 R130Q homozygotes for the mutation (QQ), as well as the mutant allele were significantly higher in cases compared with controls. The IL-13 R130Q variant, or another locus, linked to it, may increase the risk of MI

    Increased oxidative stress as a risk factor in chronic idiopathic axonal polyneuropathy

    Get PDF
    Chronic idiopathic axonal polyneuropathy (CIAP) is a disorder with insidious onset and slow progression, where no etiology is identified despite appropriate investigations. We aimed to investigate the role of oxidative stress as a risk factor for the pathogenesis of CIAP. Sera of patients with CIAP were tested for protein carbonyl (PC) and 8-hydroxydeoxyguanosine (8H). As a control group, we recruited patients with gluten neuropathy. Twenty-one patients with CIAP and 21 controls were recruited. The two groups did not differ significantly regarding demographics or clinical characteristics (i.e., neuropathy type or disease severity). After adjusting for gender, having CIAP was positively correlated with both the 8H titer (standardized beta coefficient 0.349, p = 0.013) and the PC titer (standardized beta coefficient 0.469, p = 0.001). Oxidative stress appears to be increased in CIAP and might have a role in the pathogenesis of the disease
    corecore