38 research outputs found

    Validity and responsiveness of the Clubfoot Assessment Protocol (CAP). A methodological study

    Get PDF
    BACKGROUND: The Clubfoot Assessment Protocol (CAP) is a multi dimensional instrument designed for longitudinal follow up of the clubfoot deformity during growth. Item reliability has shown to be sufficient. In this article the CAP's validity and responsiveness is studied using the Dimeglio classification scoring as a gold standard. METHODS: Thirty-two children with 45 congenital clubfeet were assessed prospectively and consecutively at ages of new-born, one, two, four months and two years of age. For convergent/divergent construct validity the Spearman's correlation coefficients were calculated. Discriminate validity was evaluated by studying the scores in bilateral clubfeet. The floor-ceiling effects at baseline (untreated clubfeet) and at two years of age (treated clubfeet) were evaluated. Responsiveness was evaluated by using effect sizes (ES) and by calculating if significant changes (Wilcoxons signed test) had occurred between the different measurement occasions. RESULTS: High to moderate significant correlation were found between CAP mobility I and morphology and the Dimeglio scores (r(s )= 0.77 and 0.44 respectively). Low correlation was found between CAP muscle function, mobility II and motion quality and the Dimeglio scoring system (r(s )= 0.20, 0.09 and 0.06 respectively). Of 13 children with bilateral clubfeet, 11 showed different CAP mobility I scores between right and left foot at baseline (untreated) compared with 5 with the Dimeglio score. At the other assessment occasions the CAP mobility I continued to show higher discrimination ability than the Dimeglio. No floor effects and low ceiling effects were found in the untreated clubfeet for both instruments. High ceiling effects were found in the CAP for the treated children and low for the Dimeglio. Responsiveness was good. ES from untreated to treated ranged from 0.80 to 4.35 for the CAP subgroups and was 4.68 for the Dimeglio. The first four treatment months, the CAP mobility I had generally higher ES compared with the Dimeglio. CONCLUSION: The Clubfoot Assessment Protocol shows in this study good validity and responsiveness. The CAP is more responsive when severity ranges between mild – moderate to severe, while the Dimeglio focuses more on the extremes. The ability to discriminate between different mobility status of the right and left foot in bilaterally affected children in this population was higher compared with the Dimeglio score implicating a better sensitivity for the CAP

    Understanding unequal ageing: towards a synthesis of intersectionality and life course analyses

    Get PDF
    Intersectionality has received an increasing amount of attention in health inequalities research in recent years. It suggests that treating social characteristics separately—mainly age, gender, ethnicity, and socio-economic position—does not match the reality that people simultaneously embody multiple characteristics and are therefore potentially subject to multiple forms of discrimination. Yet the intersectionality literature has paid very little attention to the nature of ageing or the life course, and gerontology has rarely incorporated insights from intersectionality. In this paper, we aim to illustrate how intersectionality might be synthesised with a life course perspective to deliver novel insights into unequal ageing, especially with respect to health. First we provide an overview of how intersectionality can be used in research on inequality, focusing on intersectional subgroups, discrimination, categorisation, and individual heterogeneity. We cover two key approaches—the use of interaction terms in conventional models and multilevel models which are particularly focussed on granular subgroup differences. In advancing a conceptual dialogue with the life course perspective, we discuss the concepts of roles, life stages, transitions, age/cohort, cumulative disadvantage/advantage, and trajectories. We conclude that the synergies between intersectionality and the life course hold exciting opportunities to bring new insights to unequal ageing and its attendant health inequalities

    Surface pretreatments for medical application of adhesion

    Get PDF
    Medical implants and prostheses (artificial hips, tendono- and ligament plasties) usually are multi-component systems that may be machined from one of three material classes: metals, plastics and ceramics. Typically, the body-sided bonding element is bone. The purpose of this contribution is to describe developments carried out to optimize the techniques , connecting prosthesis to bone, to be joined by an adhesive bone cement at their interface. Although bonding of organic polymers to inorganic or organic surfaces and to bone has a long history, there remains a serious obstacle in realizing long-term high-bonding strengths in the in vivo body environment of ever present high humidity. Therefore, different pretreatments, individually adapted to the actual combination of materials, are needed to assure long term adhesive strength and stability against hydrolysis. This pretreatment for metal alloys may be silica layering; for PE-plastics, a specific plasma activation; and for bone, amphiphilic layering systems such that the hydrophilic properties of bone become better adapted to the hydrophobic properties of the bone cement. Amphiphilic layering systems are related to those developed in dentistry for dentine bonding. Specific pretreatment can significantly increase bond strengths, particularly after long term immersion in water under conditions similar to those in the human body. The bond strength between bone and plastic for example can be increased by a factor approaching 50 (pealing work increasing from 30 N/m to 1500 N/m). This review article summarizes the multi-disciplined subject of adhesion and adhesives, considering the technology involved in the formation and mechanical performance of adhesives joints inside the human body

    Multifaceted roles of GSK-3 and Wnt/β-catenin in hematopoiesis and leukemogenesis: opportunities for therapeutic intervention

    Get PDF
    Glycogen synthase kinase-3 (GSK-3) is well documented to participate in a complex array of critical cellular processes. It was initially identified in rat skeletal muscle as a serine/threonine kinase that phosphorylated and inactivated glycogen synthase. This versatile protein is involved in numerous signaling pathways that influence metabolism, embryogenesis, differentiation, migration, cell cycle progression and survival. Recently, GSK-3 has been implicated in leukemia stem cell pathophysiology and may be an appropriate target for its eradication. In this review, we will discuss the roles that GSK-3 plays in hematopoiesis and leukemogenesis as how this pivotal kinase can interact with multiple signaling pathways such as: Wnt/β-catenin, phosphoinositide 3-kinase (PI3K)/phosphatase and tensin homolog (PTEN)/Akt/mammalian target of rapamycin (mTOR), Ras/Raf/MEK/extracellular signal-regulated kinase (ERK), Notch and others. Moreover, we will discuss how targeting GSK-3 and these other pathways can improve leukemia therapy and may overcome therapeutic resistance. In summary, GSK-3 is a crucial regulatory kinase interacting with multiple pathways to control various physiological processes, as well as leukemia stem cells, leukemia progression and therapeutic resistance. GSK-3 and Wnt are clearly intriguing therapeutic targets

    Evasion of regulatory phosphorylation by an alternatively spliced isoform of Musashi2

    No full text
    The Musashi family of RNA binding proteins act to promote stem cell self-renewal and oppose cell differentiation predominantly through translational repression of mRNAs encoding pro-differentiation factors and inhibitors of cell cycle progression. During tissue development and repair however, Musashi repressor function must be dynamically regulated to allow cell cycle exit and differentiation. The mechanism by which Musashi repressor function is attenuated has not been fully established. Our prior work indicated that the Musashi1 isoform undergoes site-specific regulatory phosphorylation. Here, we demonstrate that the canonical Musashi2 isoform is subject to similar regulated site-specific phosphorylation, converting Musashi2 from a repressor to an activator of target mRNA translation. We have also characterized a novel alternatively spliced, truncated isoform of human Musashi2 (variant 2) that lacks the sites of regulatory phosphorylation and fails to promote translation of target mRNAs. Consistent with a role in opposing cell cycle exit and differentiation, upregulation of Musashi2 variant 2 was observed in a number of cancers and overexpression of the Musashi2 variant 2 isoform promoted cell transformation. These findings indicate that alternately spliced isoforms of the Musashi protein family possess distinct functional and regulatory properties and suggest that differential expression of Musashi isoforms may influence cell fate decisions

    Test-Retest Reliability of the Stair Test in Patients with Total Hip Arthroplasty

    No full text
    Purpose: Stair climbing is one of the important functional activities of daily living to maintain mobility and independence. Walking and stair climbing have been identified by clinicians and patients as critical functional activities before and after total hip arthroplasty (THA). Testing the ability to manage steps has been commonly used in clinical and research settings because it is an inexpensive and simple way to measure functional status after THA. The frequent use of this test supports studies seeking evidence to validate stair test (ST) as a measure of physical performance in subjects with THA. The aim of this study is to determine the test-retest reliability of the 9-step ST in patients with THA
    corecore