110 research outputs found

    Posterior reversible encephalopathy syndrome in a child with cyclical vomiting and hypertension: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Posterior reversible encephalopathy syndrome is characterized by headache, nausea and vomiting, seizures and visual disturbances. It has certain characteristic radiological features, which allow diagnosis in the appropriate clinical setting and enable appropriate clinical therapy to be instituted.</p> <p>Case presentation</p> <p>A 10-year-old Caucasian girl who was hospitalized due to recurrent vomiting was diagnosed as having posterior reversible encephalopathy syndrome after an initial diagnosis of cyclical vomiting and hypertension was made.</p> <p>Conclusion</p> <p>Posterior reversible encephalopathy syndrome is a rare disorder in children. Early recognition of characteristic radiological features is key to the diagnosis as clinical symptoms may be non-specific or mimic other neurological illnesses. To the best of our knowledge this is the first case to report an association between posterior reversible encephalopathy syndrome, cyclical vomiting and hypertension. Furthermore, in this case, the resolution of the abnormalities found on magnetic resonance imaging over time did not appear to equate with clinical recovery.</p

    Acute epiglottitis as the initial presentation of pediatric Systemic Lupus Erythematosus

    Get PDF
    We report a case of a 5-year old girl, who initially presented with acute epiglottitis, sepsis and multi-organ failure. She was subsequently diagnosed as having Systemic Lupus Erythematosus. To the best of our knowledge, this article describes the first case of Haemophilus influenzae type f epiglottitis as the initial presentation of SLE in childhood

    B Cells Regulate Neutrophilia during Mycobacterium tuberculosis Infection and BCG Vaccination by Modulating the Interleukin-17 Response

    Get PDF
    We have previously demonstrated that B cells can shape the immune response to Mycobacterium tuberculosis, including the level of neutrophil infiltration and granulomatous inflammation at the site of infection. The present study examined the mechanisms by which B cells regulate the host neutrophilic response upon exposure to mycobacteria and how neutrophilia may influence vaccine efficacy. To address these questions, a murine aerosol infection tuberculosis (TB) model and an intradermal (ID) ear BCG immunization mouse model, involving both the μMT strain and B cell-depleted C57BL/6 mice, were used. IL (interleukin)-17 neutralization and neutrophil depletion experiments using these systems provide evidence that B cells can regulate neutrophilia by modulating the IL-17 response during M. tuberculosis infection and BCG immunization. Exuberant neutrophilia at the site of immunization in B cell-deficient mice adversely affects dendritic cell (DC) migration to the draining lymph nodes and attenuates the development of the vaccine-induced Th1 response. The results suggest that B cells are required for the development of optimal protective anti-TB immunity upon BCG vaccination by regulating the IL-17/neutrophilic response. Administration of sera derived from M. tuberculosis-infected C57BL/6 wild-type mice reverses the lung neutrophilia phenotype in tuberculous μMT mice. Together, these observations provide insight into the mechanisms by which B cells and humoral immunity modulate vaccine-induced Th1 response and regulate neutrophila during M. tuberculosis infection and BCG immunization. © 2013 Kozakiewicz et al

    Malaria Infections Do Not Compromise Vaccine-Induced Immunity against Tuberculosis in Mice

    Get PDF
    BACKGROUND: Given the considerable geographic overlap in the endemic regions for malaria and tuberculosis, it is probable that co-infections with Mycobacterium tuberculosis and Plasmodium species are prevalent. Thus, it is quite likely that both malaria and TB vaccines may be used in the same populations in endemic areas. While novel vaccines are currently being developed and tested individually against each of these pathogens, the efficacy of these vaccines has not been evaluated in co-infection models. To further assess the effectiveness of these new immunization strategies, we investigated whether co-infection with malaria would impact the anti-tuberculosis protection induced by four different types of TB vaccines in a mouse model of pulmonary tuberculosis. PRINCIPAL FINDINGS: Here we show that the anti-tuberculosis protective immunity induced by four different tuberculosis vaccines was not impacted by a concurrent infection with Plasmodium yoelii NL, a nonlethal form of murine malaria. After an aerogenic challenge with virulent M. tuberculosis, the lung bacterial burdens of vaccinated animals were not statistically different in malaria infected and malaria naïve mice. Multi-parameter flow cytometric analysis showed that the frequency and the median fluorescence intensities (MFI) for specific multifunctional T (MFT) cells expressing IFN-γ, TNF-α, and/or IL-2 were suppressed by the presence of malaria parasites at 2 weeks following the malaria infection but was not affected after parasite clearance at 7 and 10 weeks post-challenge with P. yoelii NL. CONCLUSIONS: Our data indicate that the effectiveness of novel TB vaccines in protecting against tuberculosis was unaffected by a primary malaria co-infection in a mouse model of pulmonary tuberculosis. While the activities of specific MFT cell subsets were reduced at elevated levels of malaria parasitemia, the T cell suppression was short-lived. Our findings have important relevance in developing strategies for the deployment of new TB vaccines in malaria endemic areas

    Contemporary review of risk-stratified management in acute uncomplicated and complicated diverticulitis

    Get PDF
    BACKGROUND: Acute colonic diverticulitis is a common clinical condition. Severity of the disease is based on clinical, laboratory, and radiological investigations and dictates the need for medical or surgical intervention. Recent clinical trials have improved the understanding of the natural history of the disease resulting in new approaches to and better evidence for the management of acute diverticulitis. METHODS: We searched the Cochrane Library (years 2004-2015), MEDLINE (years 2004-2015), and EMBASE (years 2004-2015) databases. We used the search terms "diverticulitis, colonic" or "acute diverticulitis" or "divertic*" in combination with the terms "management," "antibiotics," "non-operative," or "surgery." Registers for clinical trials (such as the WHO registry and the https://clinicaltrials.gov/) were searched for ongoing, recruiting, or closed trials not yet published. RESULTS: Antibiotic treatment can be avoided in simple, non-complicated diverticulitis and outpatient management is safe. The management of complicated disease, ranging from a localized abscess to perforation with diffuse peritonitis, has changed towards either percutaneous or minimally invasive approaches in selected cases. The role of laparoscopic lavage without resection in perforated non-fecal diverticulitis is still debated; however, recent evidence from two randomised controlled trials has found a higher re-intervention in this group of patients. CONCLUSIONS: A shift in management has occurred towards conservative management in acute uncomplicated disease. Those with uncomplicated acute diverticulitis may be treated without antibiotics. For complicated diverticulitis with purulent peritonitis, the use of peritoneal lavage appears to be non-superior to resection

    Suboptimal Activation of Antigen-Specific CD4+ Effector Cells Enables Persistence of M. tuberculosis In Vivo

    Get PDF
    Adaptive immunity to Mycobacterium tuberculosis controls progressive bacterial growth and disease but does not eradicate infection. Among CD4+ T cells in the lungs of M. tuberculosis-infected mice, we observed that few produced IFN-γ without ex vivo restimulation. Therefore, we hypothesized that one mechanism whereby M. tuberculosis avoids elimination is by limiting activation of CD4+ effector T cells at the site of infection in the lungs. To test this hypothesis, we adoptively transferred Th1-polarized CD4+ effector T cells specific for M. tuberculosis Ag85B peptide 25 (P25TCRTh1 cells), which trafficked to the lungs of infected mice and exhibited antigen-dependent IFN-γ production. During the early phase of infection, ∼10% of P25TCRTh1 cells produced IFN-γ in vivo; this declined to <1% as infection progressed to chronic phase. Bacterial downregulation of fbpB (encoding Ag85B) contributed to the decrease in effector T cell activation in the lungs, as a strain of M. tuberculosis engineered to express fbpB in the chronic phase stimulated P25TCRTh1 effector cells at higher frequencies in vivo, and this resulted in CD4+ T cell-dependent reduction of lung bacterial burdens and prolonged survival of mice. Administration of synthetic peptide 25 alone also increased activation of endogenous antigen-specific effector cells and reduced the bacterial burden in the lungs without apparent host toxicity. These results indicate that CD4+ effector T cells are activated at suboptimal frequencies in tuberculosis, and that increasing effector T cell activation in the lungs by providing one or more epitope peptides may be a successful strategy for TB therapy

    Focus on the management of thunderclap headache: from nosography to treatment

    Get PDF
    Thunderclap headache (TCH) is an excruciating headache characterized by a very sudden onset. Recognition and accurate diagnosis of TCH are important in order to rule out the various, serious underlying brain disorders that, in a high percentage of cases, are the real cause of the headache. Primary TCH, which may recur intermittently and generally has a spontaneous, benign evolution, can thus be diagnosed only when all other potential underlying causes have been excluded through accurate diagnostic work up. In this review, we focus on the management of TCH, paying particular attention to the diagnostic work up and treatment of the condition

    Association of severe hypertension with pneumonia in elderly patients with acute ischemic stroke

    Get PDF
    Pneumonia is one of the most frequent complications in elderly patients with acute ischemic stroke. Although severe hypertension is often observed in the early phase of acute stroke, there are few studies of acute hypertension as a factor influencing the incidence of stroke-associated pneumonia (SAP) in elderly subjects with acute ischemic stroke. To assess the association of acute phase blood-pressure elevation with the incidence of SAP, we compared 10 elderly patients with acute ischemic stroke complicated with severe hypertension (⩾200/120 mm Hg) with 43 patients with moderate hypertension (160–199/100–119 mm Hg), as well as with 65 control normotensive or mildly hypertensive (<160/100 mm Hg) controls on admission. Data were collected on known risk factors, type of ischemic stroke and underlying chronic conditions. The significance of differences in risk factors was analyzed using univariate and multivariate comparisons of 38 SAP cases and others, 8 SAP death cases and others, and 28 patients with poor outcome associated with in-hospital death or artificial feeding at discharge and others. After adjustment for potential confounding factors, the relative risk estimates for SAP, SAP death and poor outcome were 2.83 (95% confidence interval 1.14–7.05), 5.20 (1.01–26.8) and 6.84 (1.32–35.4), respectively, for severe hypertension relative to normotensive or mildly hypertensive controls. We conclude that severe hypertension on admission is an independent predictive factor for SAP in elderly patients with acute ischemic stroke
    corecore