42 research outputs found

    Influence of long-range dipolar interactions on the phase stability and hysteresis shapes of ferroelectric and antiferroelectric multilayers

    Get PDF
    Phase transition and field driven hysteresis evolution of a two-dimensional Ising grid consisting of ferroelectric-antiferroelectric multilayers that take into account the long range dipolar interactions were simulated by a Monte-Carlo method. Simulations were carried out for a 1+1 bilayer and a 5+5 superlattice. Phase stabilities of components comprising the structures with an electrostatic-like coupling term were also studied. An electrostatic-like coupling, in the absence of an applied field, can drive the ferroelectric layers towards 180º domains with very flat domain interfaces mainly due to the competition between this term and the dipole-dipole interaction. The antiferroelectric layers do not undergo an antiferroelectric-to-ferroelectric transition under the influence of an electrostatic-like coupling between layers as the ferroelectric layer splits into periodic domains at the expense of the domain wall energy. The long-range interactions become significant near the interfaces. For high periodicity structures with several interfaces, the interlayer long-range interactions substantially impact the configuration of the ferroelectric layers while the antiferroelectric layers remain quite stable unless these layers are near the Neel temperature. In systems investigated with several interfaces, the hysteresis loops do not exhibit a clear presence of antiferroelectricity that could be expected in the presence of anti-parallel dipoles, i. e., the switching takes place abruptly. Some recent experimental observations in ferroelectric-antiferroelectric multilayers are discussed where we conclude that the different electrical properties of bilayers and superlattices are not only due to strain effects alone but also long-range interactions. The latter manifests itself particularly in superlattices where layers are periodically exposed to each other at the interfaces

    Observation of a One-Dimensional Spin-Orbit Gap in a Quantum Wire

    Full text link
    Understanding the flow of spins in magnetic layered structures has enabled an increase in data storage density in hard drives over the past decade of more than two orders of magnitude1. Following this remarkable success, the field of 'spintronics' or spin-based electronics is moving beyond effects based on local spin polarisation and is turning its attention to spin-orbit interaction (SOI) effects, which hold promise for the production, detection and manipulation of spin currents, allowing coherent transmission of information within a device. While SOI-induced spin transport effects have been observed in two- and three-dimensional samples, these have been subtle and elusive, often detected only indirectly in electrical transport or else with more sophisticated techniques. Here we present the first observation of a predicted 'spin-orbit gap' in a one-dimensional sample, where counter-propagating spins, constituting a spin current, are accompanied by a clear signal in the easily-measured linear conductance of the system.Comment: 10 pages, 5 figures, supplementary informatio

    Unravelling the role of the interface for spin injection into organic semiconductors

    Full text link
    Whereas spintronics brings the spin degree of freedom to electronic devices, molecular/organic electronics adds the opportunity to play with the chemical versatility. Here we show how, as a contender to commonly used inorganic materials, organic/molecular based spintronics devices can exhibit very large magnetoresistance and lead to tailored spin polarizations. We report on giant tunnel magnetoresistance of up to 300% in a (La,Sr)MnO3/Alq3/Co nanometer size magnetic tunnel junction. Moreover, we propose a spin dependent transport model giving a new understanding of spin injection into organic materials/molecules. Our findings bring a new insight on how one could tune spin injection by molecular engineering and paves the way to chemical tailoring of the properties of spintronics devices.Comment: Original version. Revised version to appear in Nature Physics

    Strain on ferroelectric thin films

    Get PDF

    Negative capacitance detected

    No full text
    The experimental detection of negative capacitance in ferroelectrics rekindles hopes that the phenomenon could be used to further push the miniaturization of conventional transistors.Peer Reviewe

    Submolecular control, spectroscopy and imaging of bond-selective chemistry in single functionalized molecules

    No full text
    One of the key challenges in chemistry is to break and form bonds selectively in complex organic molecules that possess a range of different functional groups. To do this at the single-molecule level not only provides an opportunity to create custom nanoscale devices, but offers opportunities for the in-depth study of how the molecular electronic structure changes in individual reactions. Here we use a scanning tunnelling microscope (STM) to induce a sequence of targeted bond dissociation and formation steps in single thiol-based pi-conjugated molecules adsorbed on a NiAl(110) surface. Furthermore, the electronic resonances of the resulting species were measured by spatially resolved electronic spectroscopy at each reaction step. Specifically, the STM was used to cleave individual acetyl groups and to form Au-S bonds by manipulating single Au atoms. A detailed understanding of the Au-S bond and its non-local influence is fundamentally important for determining the electron transport in thiol-based molecular junction.Chemistry, MultidisciplinarySCI(E)15ARTICLE136-41
    corecore