1,905 research outputs found

    Boundary Conditions for Interacting Membranes

    Get PDF
    We investigate supersymmetric boundary conditions in both the Bagger-Lambert and the ABJM theories of interacting membranes. We find boundary conditions associated to the fivebrane, the ninebrane and the M-theory wave. For the ABJM theory we are able to understand the enhancement of supersymmetry to produce the (4,4) supersymmetry of the self-dual string. We also include supersymmetric boundary conditions on the gauge fields that cancel the classical gauge anomaly of the Chern-Simons terms.Comment: 36 pages, latex, v2 minor typos correcte

    Conformal field theories in anti-de Sitter space

    Get PDF
    In this paper we discuss the dynamics of conformal field theories on anti-de Sitter space, focussing on the special case of the N=4 supersymmetric Yang-Mills theory on AdS_4. We argue that the choice of boundary conditions, in particular for the gauge field, has a large effect on the dynamics. For example, for weak coupling, one of two natural choices of boundary conditions for the gauge field leads to a large N deconfinement phase transition as a function of the temperature, while the other does not. For boundary conditions that preserve supersymmetry, the strong coupling dynamics can be analyzed using S-duality (relevant for g_{YM} >> 1), utilizing results of Gaiotto and Witten, as well as by using the AdS/CFT correspondence (relevant for large N and large 't Hooft coupling). We argue that some very specific choices of boundary conditions lead to a simple dual gravitational description for this theory, while for most choices the gravitational dual is not known. In the cases where the gravitational dual is known, we discuss the phase structure at large 't Hooft coupling.Comment: 57 pages, 1 figure. v2: fixed typo

    Worldvolume Superalgebra Of BLG Theory With Nambu-Poisson Structure

    Full text link
    Recently it was proposed that the Bagger-Lambert-Gustavsson theory with Nambu-Poisson structure describes an M5-brane in a three-form flux background. In this paper we investigate the superalgebra associated with this theory. We derive the central charges corresponding to M5-brane solitons in 3-form backgrounds. We also show that double dimensional reduction of the superalgebra gives rise to the Poisson bracket terms of a non-commutative D4-brane superalgebra. We provide interpretations of the D4-brane charges in terms of spacetime intersections.Comment: 23 pages; references added, section 4 clarification

    Biomarker clusters are differentially associated with longitudinal cognitive decline in late midlife

    Get PDF
    The ability to detect preclinical Alzheimer’s disease is of great importance, as this stage of the Alzheimer’s continuum is believed to provide a key window for intervention and prevention. As Alzheimer’s disease is characterized by multiple pathological changes, a biomarker panel reflecting co-occurring pathology will likely be most useful for early detection. Towards this end, 175 late middle-aged participants (mean age 55.9 ± 5.7 years at first cognitive assessment, 70% female) were recruited from two longitudinally followed cohorts to undergo magnetic resonance imaging and lumbar puncture. Cluster analysis was used to group individuals based on biomarkers of amyloid pathology (cerebrospinal fluid amyloid-β42/amyloid-β40 assay levels), magnetic resonance imaging-derived measures of neurodegeneration/atrophy (cerebrospinal fluid-to-brain volume ratio, and hippocampal volume), neurofibrillary tangles (cerebrospinal fluid phosphorylated tau181 assay levels), and a brain-based marker of vascular risk (total white matter hyperintensity lesion volume). Four biomarker clusters emerged consistent with preclinical features of (i) Alzheimer’s disease; (ii) mixed Alzheimer’s disease and vascular aetiology; (iii) suspected non-Alzheimer’s disease aetiology; and (iv) healthy ageing. Cognitive decline was then analysed between clusters using longitudinal assessments of episodic memory, semantic memory, executive function, and global cognitive function with linear mixed effects modelling. Cluster 1 exhibited a higher intercept and greater rates of decline on tests of episodic memory. Cluster 2 had a lower intercept on a test of semantic memory and both Cluster 2 and Cluster 3 had steeper rates of decline on a test of global cognition. Additional analyses on Cluster 3, which had the smallest hippocampal volume, suggest that its biomarker profile is more likely due to hippocampal vulnerability and not to detectable specific volume loss exceeding the rate of normal ageing. Our results demonstrate that pathology, as indicated by biomarkers, in a preclinical timeframe is related to patterns of longitudinal cognitive decline. Such biomarker patterns may be useful for identifying at-risk populations to recruit for clinical trials

    The Protein Model Portal

    Get PDF
    Structural Genomics has been successful in determining the structures of many unique proteins in a high throughput manner. Still, the number of known protein sequences is much larger than the number of experimentally solved protein structures. Homology (or comparative) modeling methods make use of experimental protein structures to build models for evolutionary related proteins. Thereby, experimental structure determination efforts and homology modeling complement each other in the exploration of the protein structure space. One of the challenges in using model information effectively has been to access all models available for a specific protein in heterogeneous formats at different sites using various incompatible accession code systems. Often, structure models for hundreds of proteins can be derived from a given experimentally determined structure, using a variety of established methods. This has been done by all of the PSI centers, and by various independent modeling groups. The goal of the Protein Model Portal (PMP) is to provide a single portal which gives access to the various models that can be leveraged from PSI targets and other experimental protein structures. A single interface allows all existing pre-computed models across these various sites to be queried simultaneously, and provides links to interactive services for template selection, target-template alignment, model building, and quality assessment. The current release of the portal consists of 7.6 million model structures provided by different partner resources (CSMP, JCSG, MCSG, NESG, NYSGXRC, JCMM, ModBase, SWISS-MODEL Repository). The PMP is available at http://www.proteinmodelportal.org and from the PSI Structural Genomics Knowledgebase

    Formation of regulatory modules by local sequence duplication

    Get PDF
    Turnover of regulatory sequence and function is an important part of molecular evolution. But what are the modes of sequence evolution leading to rapid formation and loss of regulatory sites? Here, we show that a large fraction of neighboring transcription factor binding sites in the fly genome have formed from a common sequence origin by local duplications. This mode of evolution is found to produce regulatory information: duplications can seed new sites in the neighborhood of existing sites. Duplicate seeds evolve subsequently by point mutations, often towards binding a different factor than their ancestral neighbor sites. These results are based on a statistical analysis of 346 cis-regulatory modules in the Drosophila melanogaster genome, and a comparison set of intergenic regulatory sequence in Saccharomyces cerevisiae. In fly regulatory modules, pairs of binding sites show significantly enhanced sequence similarity up to distances of about 50 bp. We analyze these data in terms of an evolutionary model with two distinct modes of site formation: (i) evolution from independent sequence origin and (ii) divergent evolution following duplication of a common ancestor sequence. Our results suggest that pervasive formation of binding sites by local sequence duplications distinguishes the complex regulatory architecture of higher eukaryotes from the simpler architecture of unicellular organisms

    Fr-TM-align: a new protein structural alignment method based on fragment alignments and the TM-score

    Get PDF
    ©2008 Pandit and Skolnick; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This article is available from: http://www.biomedcentral.com/1471-2105/9/531doi:10.1186/1471-2105-9-531Background: Protein tertiary structure comparisons are employed in various fields of contemporary structural biology. Most structure comparison methods involve generation of an initial seed alignment, which is extended and/or refined to provide the best structural superposition between a pair of protein structures as assessed by a structure comparison metric. One such metric, the TM-score, was recently introduced to provide a combined structure quality measure of the coordinate root mean square deviation between a pair of structures and coverage. Using the TM-score, the TM-align structure alignment algorithm was developed that was often found to have better accuracy and coverage than the most commonly used structural alignment programs; however, there were a number of situations when this was not true. Results: To further improve structure alignment quality, the Fr-TM-align algorithm has been developed where aligned fragment pairs are used to generate the initial seed alignments that are then refined using dynamic programming to maximize the TM-score. For the assessment of the structural alignment quality from Fr-TM-align in comparison to other programs such as CE and TMalign, we examined various alignment quality assessment scores such as PSI and TM-score. The assessment showed that the structural alignment quality from Fr-TM-align is better in comparison to both CE and TM-align. On average, the structural alignments generated using Fr-TM-align have a higher TM-score (~9%) and coverage (~7%) in comparison to those generated by TM-align. Fr- TM-align uses an exhaustive procedure to generate initial seed alignments. Hence, the algorithm is computationally more expensive than TM-align. Conclusion: Fr-TM-align, a new algorithm that employs fragment alignment and assembly provides better structural alignments in comparison to TM-align. The source code and executables of Fr- TM-align are freely downloadable at: http://cssb.biology.gatech.edu/skolnick/files/FrTMalign/

    Comparison of long-term mortality risk following normal exercise vs adenosine myocardial perfusion SPECT

    Get PDF
    A higher frequency of clinical events has been observed in patients undergoing pharmacological vs exercise myocardial perfusion single-photon emission computed tomography (SPECT). While this difference is attributed to greater age and co-morbidities, it is not known whether these tests also differ in prognostic ability among patients with similar clinical profiles. We assessed all-cause mortality rates in 6,069 patients, followed for 10.2 ± 1.7 years after undergoing exercise or adenosine SPECT. We employed propensity analysis to match exercise and adenosine subgroups by age, gender, symptoms, and coronary risk factors. Within our propensity-matched cohorts, adenosine patients had an annualized mortality rate event rates that was more than twice that of exercise patients (3.9% vs 1.6%, P < .0001). Differences in mortality persisted among age groups, including those <55 years old. In the exercise cohort, mortality was inversely related to exercise duration, with comparable mortality noted for patients exercising <3 min and those undergoing adenosine testing. Among patients with normal stress SPECT tests, those undergoing adenosine testing manifest a mortality rate that is substantially higher than that observed among adequately exercising patients, but comparable to that observed among very poorly exercising patients. This elevated risk underscores an important challenge for managing patients undergoing pharmacological stress testing

    Practical computational toolkits for dendrimers and dendrons structure design

    Get PDF
    Dendrimers and dendrons offer an excellent platform for developing novel drug delivery systems and medicines. The rational design and further development of these repetitively branched systems are restricted by difficulties in scalable synthesis and structural determination, which can be overcome by judicious use of molecular modelling and molecular simulations. A major difficulty to utilise in silico studies to design dendrimers lies in the laborious generation of their structures. Current modelling tools utilise automated assembly of simpler dendrimers or the inefficient manual assembly of monomer precursors to generate more complicated dendrimer structures. Herein we describe two novel graphical user interface (GUI) toolkits written in Python that provide an improved degree of automation for rapid assembly of dendrimers and generation of their 2D and 3D structures. Our first toolkit uses the RDkit library, SMILES nomenclature of monomers and SMARTS reaction nomenclature to generate SMILES and mol files of dendrimers without 3D coordinates. These files are used for simple graphical representations and storing their structures in databases. The second toolkit assembles complex topology dendrimers from monomers to construct 3D dendrimer structures to be used as starting points for simulation using existing and widely available software and force fields. Both tools were validated for ease-of-use to prototype dendrimer structure and the second toolkit was especially relevant for dendrimers of high complexity and size.Peer reviewe

    Multiple structure alignment and consensus identification for proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An algorithm is presented to compute a multiple structure alignment for a set of proteins and to generate a consensus (pseudo) protein which captures common substructures present in the given proteins. The algorithm represents each protein as a sequence of triples of coordinates of the alpha-carbon atoms along the backbone. It then computes iteratively a sequence of transformation matrices (i.e., translations and rotations) to align the proteins in space and generate the consensus. The algorithm is a heuristic in that it computes an approximation to the optimal alignment that minimizes the sum of the pairwise distances between the consensus and the transformed proteins.</p> <p>Results</p> <p>Experimental results show that the algorithm converges quite rapidly and generates consensus structures that are visually similar to the input proteins. A comparison with other coordinate-based alignment algorithms (MAMMOTH and MATT) shows that the proposed algorithm is competitive in terms of speed and the sizes of the conserved regions discovered in an extensive benchmark dataset derived from the HOMSTRAD and SABmark databases.</p> <p>The algorithm has been implemented in C++ and can be downloaded from the project's web page. Alternatively, the algorithm can be used via a web server which makes it possible to align protein structures by uploading files from local disk or by downloading protein data from the RCSB Protein Data Bank.</p> <p>Conclusions</p> <p>An algorithm is presented to compute a multiple structure alignment for a set of proteins, together with their consensus structure. Experimental results show its effectiveness in terms of the quality of the alignment and computational cost.</p
    corecore