26 research outputs found

    Lattice potentials and fermions in holographic non Fermi-liquids: hybridizing local quantum criticality

    Get PDF
    We study lattice effects in strongly coupled systems of fermions at a finite density described by a holographic dual consisting of fermions in Anti-de-Sitter space in the presence of a Reissner-Nordstrom black hole. The lattice effect is encoded by a periodic modulation of the chemical potential with a wavelength of order of the intrinsic length scales of the system. This corresponds with a highly complicated "band structure" problem in AdS, which we only manage to solve in the weak potential limit. The "domain wall" fermions in AdS encoding for the Fermi surfaces in the boundary field theory diffract as usually against the periodic lattice, giving rise to band gaps. However, the deep infrared of the field theory as encoded by the near horizon AdS2 geometry in the bulk reacts in a surprising way to the weak potential. The hybridization of the fermions bulk dualizes into a linear combination of CFT1 "local quantum critical" propagators in the bulk, characterized by momentum dependent exponents displaced by lattice Umklapp vectors. This has the consequence that the metals showing quasi-Fermi surfaces cannot be localized in band insulators. In the AdS2 metal regime, where the conformal dimension of the fermionic operator is large and no Fermi surfaces are present at low T/\mu, the lattice gives rise to a characteristic dependence of the energy scaling as a function of momentum. We predict crossovers from a high energy standard momentum AdS2 scaling to a low energy regime where exponents found associated with momenta "backscattered" to a lower Brillioun zone in the extended zone scheme. We comment on how these findings can be used as a unique fingerprint for the detection of AdS2 like "pseudogap metals" in the laboratory.Comment: 42 pages, 5 figures; v2, minor correction, to appear in JHE

    Integration of the Duke Activity Status Index into preoperative risk evaluation: a multicentre prospective cohort study.

    Get PDF
    BACKGROUND: The Duke Activity Status Index (DASI) questionnaire might help incorporate self-reported functional capacity into preoperative risk assessment. Nonetheless, prognostically important thresholds in DASI scores remain unclear. We conducted a nested cohort analysis of the Measurement of Exercise Tolerance before Surgery (METS) study to characterise the association of preoperative DASI scores with postoperative death or complications. METHODS: The analysis included 1546 participants (≥40 yr of age) at an elevated cardiac risk who had inpatient noncardiac surgery. The primary outcome was 30-day death or myocardial injury. The secondary outcomes were 30-day death or myocardial infarction, in-hospital moderate-to-severe complications, and 1 yr death or new disability. Multivariable logistic regression modelling was used to characterise the adjusted association of preoperative DASI scores with outcomes. RESULTS: The DASI score had non-linear associations with outcomes. Self-reported functional capacity better than a DASI score of 34 was associated with reduced odds of 30-day death or myocardial injury (odds ratio: 0.97 per 1 point increase above 34; 95% confidence interval [CI]: 0.96-0.99) and 1 yr death or new disability (odds ratio: 0.96 per 1 point increase above 34; 95% CI: 0.92-0.99). Self-reported functional capacity worse than a DASI score of 34 was associated with increased odds of 30-day death or myocardial infarction (odds ratio: 1.05 per 1 point decrease below 34; 95% CI: 1.00-1.09), and moderate-to-severe complications (odds ratio: 1.03 per 1 point decrease below 34; 95% CI: 1.01-1.05). CONCLUSIONS: A DASI score of 34 represents a threshold for identifying patients at risk for myocardial injury, myocardial infarction, moderate-to-severe complications, and new disability
    corecore