27 research outputs found

    Identification of genetic alterations in pancreatic cancer by the combined use of tissue microdissection and array-based comparative genomic hybridisation

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is characterised pathologically by a marked desmoplastic stromal reaction that significantly reduces the sensitivity and specificity of cytogenetic analysis. To identify genetic alterations that reflect the characteristics of the tumour in vivo, we screened a total of 23 microdissected PDAC tissue samples using array-based comparative genomic hybridisation (array CGH) with 1 Mb resolution. Highly stringent statistical analysis enabled us to define the regions of nonrandom genomic changes. We detected a total of 41 contiguous regions (>3.0 Mb) of copy number changes, such as a genetic gain at 7p22.2–p15.1 (26.0 Mb) and losses at 17p13.3–p11.2 (13.6 Mb), 18q21.2–q22.1 (12.0 Mb), 18q22.3–q23 (7.1 Mb) and 18q12.3–q21.2 (6.9 Mb). To validate our array CGH results, fluorescence in situ hybridisation was performed using four probes from those regions, showing that these genetic alterations were observed in 37–68% of a separate sample set of 19 PDAC cases. In particular, deletion of the SEC11L3 gene (18q21.32) was detected at a very high frequency (13 out of 19 cases; 68%) and in situ RNA hybridisation for this gene demonstrated a significant correlation between deletion and expression levels. It was further confirmed by reverse transcription–PCR that SEC11L3 mRNA was downregulated in 16 out of 16 PDAC tissues (100%). In conclusion, the combination of tissue microdissection and array CGH provided a valid data set that represents in vivo genetic changes in PDAC. Our results raise the possibility that the SEC11L3 gene may play a role as a tumour suppressor in this disease

    Identification of Conserved and HLA Promiscuous DENV3 T-Cell Epitopes

    Get PDF
    Anti-dengue T-cell responses have been implicated in both protection and immunopathology. However, most of the T-cell studies for dengue include few epitopes, with limited knowledge of their inter-serotype variation and the breadth of their human leukocyte antigen (HLA) affinity. In order to expand our knowledge of HLA-restricted dengue epitopes, we screened T-cell responses against 477 overlapping peptides derived from structural and non-structural proteins of the dengue virus serotype 3 (DENV3) by use of HLA class I and II transgenic mice (TgM): A2, A24, B7, DR2, DR3 and DR4. TgM were inoculated with peptides pools and the T-cell immunogenic peptides were identified by ELISPOT. Nine HLA class I and 97 HLA class II novel DENV3 epitopes were identified based on immunogenicity in TgM and their HLA affinity was further confirmed by binding assays analysis. A subset of these epitopes activated memory T-cells from DENV3 immune volunteers and was also capable of priming naïve T-cells, ex vivo, from dengue IgG negative individuals. Analysis of inter- and intra-serotype variation of such an epitope (A02-restricted) allowed us to identify altered peptide ligands not only in DENV3 but also in other DENV serotypes. These studies also characterized the HLA promiscuity of 23 HLA class II epitopes bearing highly conserved sequences, six of which could bind to more than 10 different HLA molecules representing a large percentage of the global population. These epitope data are invaluable to investigate the role of T-cells in dengue immunity/pathogenesis and vaccine design. © 2013 Nascimento et al

    Gene Dosage, Expression, and Ontology Analysis Identifies Driver Genes in the Carcinogenesis and Chemoradioresistance of Cervical Cancer

    Get PDF
    Integrative analysis of gene dosage, expression, and ontology (GO) data was performed to discover driver genes in the carcinogenesis and chemoradioresistance of cervical cancers. Gene dosage and expression profiles of 102 locally advanced cervical cancers were generated by microarray techniques. Fifty-two of these patients were also analyzed with the Illumina expression method to confirm the gene expression results. An independent cohort of 41 patients was used for validation of gene expressions associated with clinical outcome. Statistical analysis identified 29 recurrent gains and losses and 3 losses (on 3p, 13q, 21q) associated with poor outcome after chemoradiotherapy. The intratumor heterogeneity, assessed from the gene dosage profiles, was low for these alterations, showing that they had emerged prior to many other alterations and probably were early events in carcinogenesis. Integration of the alterations with gene expression and GO data identified genes that were regulated by the alterations and revealed five biological processes that were significantly overrepresented among the affected genes: apoptosis, metabolism, macromolecule localization, translation, and transcription. Four genes on 3p (RYBP, GBE1) and 13q (FAM48A, MED4) correlated with outcome at both the gene dosage and expression level and were satisfactorily validated in the independent cohort. These integrated analyses yielded 57 candidate drivers of 24 genetic events, including novel loci responsible for chemoradioresistance. Further mapping of the connections among genetic events, drivers, and biological processes suggested that each individual event stimulates specific processes in carcinogenesis through the coordinated control of multiple genes. The present results may provide novel therapeutic opportunities of both early and advanced stage cervical cancers

    Proteostasis Dysregulation in Pancreatic Cancer

    Get PDF
    The most common form of pancreatic cancer, pancreatic ductal adenocarcinoma (PDAC), has a dismal 5-year survival rate of less than 5%. Radical surgical resection, in combination with adjuvant chemotherapy, provides the best option for long-term patient survival. However, only approximately 20% of patients are resectable at the time of diagnosis, due to locally advanced or metastatic disease. There is an urgent need for the identification of new, specific, and more sensitive biomarkers for diagnosis, prognosis, and prediction to improve the treatment options for pancreatic cancer patients. Dysregulation of proteostasis is linked to many pathophysiological conditions, including various types of cancer. In this review, we report on findings relating to the main cellular protein degradation systems, the ubiquitin-proteasome system (UPS) and autophagy, in pancreatic cancer. The expression of several components of the proteolytic network, including E3 ubiquitinligases and deubiquitinating enzymes, are dysregulated in PDAC, which accounts for approximately 90% of all pancreatic malignancies. In the future, a deeper understanding of the emerging role of proteostasis in pancreatic cancer has the potential to provide clinically relevant biomarkers and new strategies for combinatorial therapeutic options to better help treat the patients.Peer reviewe

    Identification of TRPC6 as a possible candidate target gene within an amplicon at 11q21-q22.2 for migratory capacity in head and neck squamous cell carcinomas

    Get PDF
    Abstract: Background: Cytogenetic and gene expression analyses in head and neck squamous cell carcinomas (HNSCC) have allowed identification of genomic aberrations that may contribute to cancer pathophysiology. Nevertheless, the molecular consequences of numerous genetic alterations still remain unclear. Methods: To identify novel genes implicated in HNSCC pathogenesis, we analyzed the genomic alterations present in five HNSCC-derived cell lines by array CGH, and compared high level focal gene amplifications with gene expression levels to identify genes whose expression is directly impacted by these genetic events. Next, we knocked down TRPC6, one of the most highly amplified and over-expressed genes, to characterize the biological roles of TRPC6 in carcinogenesis. Finally, real time PCR was performed to determine TRPC6 gene dosage and mRNA levels in normal mucosa and human HNSCC tissues. Results: The data showed that the HNSCC-derived cell lines carry most of the recurrent genomic abnormalities previously described in primary tumors. High-level genomic amplifications were found at four chromosomal sites (11q21-q22.2, 18p11.31-p11.21, 19p13.2-p13.13, and 21q11) with associated gene expression changes in selective candidate genes suggesting that they may play an important role in the malignant behavior of HNSCC. One of the most dramatic alterations of gene transcription involved the TRPC6 gene (located at 11q21-q22.2) which has been recently implicated in tumour invasiveness. siRNA-induced knockdown of TRPC6 expression in HNSCC-derived cells dramatically inhibited HNSCC-cell invasion but did not significantly alter cell proliferation. Importantly, amplification and concomitant overexpression of TRPC6 was also found in HNSCC tumour samples. Conclusions: Altogether, these data show that TRPC6 is likely to be a target for 11q21-22.2 amplification that confers enhanced invasive behavior to HNSCC cells. Therefore, TRPC6 may be a promising therapeutic target in the treatment of HNSCC.This work was supported by Instituto de Salud Carlos III-Fondo de Investigacion Sanitaria [FIS PI11/929 to M.-D.C and C. S.]; Red Tematica de Investigacion Cooperativa en Cancer [RD12/0036/0015] Instituto de Salud Carlos III (ISCIII), Spanish Ministry of Economy and Competitiveness & European Regional Development Fund (ERDF); and Obra Social CajAstur-Instituto Universitario de Oncologia del Principado de Asturias.Bernaldo De Quirós, S.; Merlo, A.; Secades, P.; Zambrano, I.; Saenz De Santa María, I.; Ugidos, N.; Jantus Lewintre, E.... (2013). Identification of TRPC6 as a possible candidate target gene within an amplicon at 11q21-q22.2 for migratory capacity in head and neck squamous cell carcinomas. BMC Cancer. 13(116):1-9. https://doi.org/10.1186/1471-2407-13-116S1913116Akervall J: Genomic screening of head and neck cancer and its implications for therapy planning. Eur Arch Otorhinolaryngol. 2006, 263: 297-304. 10.1007/s00405-006-1039-1.Squire JA, Bayani J, Luk C, Unwin L, Tokunaga J, MacMillan C, Irish J, Brown D, Gullane P, Kamel-Reid S: Molecular cytogenetic analysis of head and neck squamous cell carcinoma: by comparative genomic hybridization, spectral karyotyping, and expression array analysis. Head Neck. 2002, 24: 874-887. 10.1002/hed.10122.Perez-Ordonez B, Beauchemin M, Jordan RC: Molecular biology of squamous cell carcinoma of the head and neck. J Clin Pathol. 2006, 59: 445-453. 10.1136/jcp.2003.007641.Tan KD, Zhu Y, Tan HK, Rajasegaran V, Aggarwal A, Wu J, Wu HY, Hwang J, Lim DT, Soo KC, Tan P: Amplification and overexpression of PPFIA1, a putative 11q13 invasion suppressor gene, in head and neck squamous cell carcinoma. Genes Chromosomes Cancer. 2008, 47: 353-362. 10.1002/gcc.20539.Rodrigo JP, Garcia LA, Ramos S, Lazo PS, Suarez C: EMS1 Gene amplification correlates with poor prognosis in squamous cell carcinomas of the head and neck. Clin Cancer Res. 2000, 6: 3177-3182.Callender T, el-Naggar AK, Lee MS, Frankenthaler R, Luna MA, Batsakis JG: PRAD-1 (CCND1)/cyclin D1 oncogene amplification in primary head and neck squamous cell carcinoma. Cancer. 1994, 74: 152-158. 10.1002/1097-0142(19940701)74:13.0.CO;2-K.Huang X, Gollin SM, Raja S, Godfrey TE: High-resolution mapping of the 11q13 amplicon and identification of a gene, TAOS1, that is amplified and overexpressed in oral cancer cells. Proc Natl Acad Sci U S A. 2002, 99: 11369-11374. 10.1073/pnas.172285799.Gorogh T, Weise JB, Holtmeier C, Rudolph P, Hedderich J, Gottschlich S, Hoffmann M, Ambrosch P, Csiszar K: Selective upregulation and amplification of the lysyl oxidase like-4 (LOXL4) gene in head and neck squamous cell carcinoma. J Pathol. 2007, 212: 74-82. 10.1002/path.2137.Begum A, Imoto I, Kozaki K, Tsuda H, Suzuki E, Amagasa T, Inazawa J: Identification of PAK4 as a putative target gene for amplification within 19q13.12-q13.2 In oral squamous-cell carcinoma. Cancer Sci. 2009, 100: 1908-1916. 10.1111/j.1349-7006.2009.01252.x.Secades P, Rodrigo JP, Hermsen M, Alvarez C, Suarez C, Chiara MD: Increase in gene dosage is a mechanism of HIF-1alpha constitutive expression in head and neck squamous cell carcinomas. Genes Chromosomes Cancer. 2009, 48: 441-454. 10.1002/gcc.20652.Singh B, Gogineni SK, Sacks PG, Shaha AR, Shah JP, Stoffel A, Rao PH: Molecular cytogenetic characterization of head and neck squamous cell carcinoma and refinement of 3q amplification. Cancer Res. 2001, 61: 4506-4513.Baldwin C, Garnis C, Zhang L, Rosin MP, Lam WL: Multiple microalterations detected at high frequency in oral cancer. Cancer Res. 2005, 65: 7561-7567.Roman E, Meza-Zepeda LA, Kresse SH, Myklebost O, Vasstrand EN, Ibrahim SO: Chromosomal aberrations in head and neck squamous cell carcinomas in Norwegian and Sudanese populations by array comparative genomic hybridization. Oncol Rep. 2008, 20: 825-843.Weber RG, Sommer C, Albert FK, Kiessling M, Cremer T: Clinically distinct subgroups of glioblastoma multiforme studied by comparative genomic hybridization. Lab Invest. 1996, 74: 108-119.Knuutila S, Bjorkqvist AM, Autio K, Tarkkanen M, Wolf M, Monni O, Szymanska J, Larramendy ML, Tapper J, Pere H: DNA copy number amplifications in human neoplasms: review of comparative genomic hybridization studies. Am J Pathol. 1998, 152: 1107-1123.Menghi-Sartorio S, Mandahl N, Mertens F, Picci P, Knuutila S: DNA copy number amplifications in sarcomas with homogeneously staining regions and double minutes. Cytometry. 2001, 46: 79-84. 10.1002/cyto.1068.Imoto I, Tsuda H, Hirasawa A, Miura M, Sakamoto M, Hirohashi S, Inazawa J: Expression of cIAP1, a target for 11q22 amplification, correlates with resistance of cervical cancers to radiotherapy. Cancer Res. 2002, 62: 4860-4866.Dai Z, Zhu WG, Morrison CD, Brena RM, Smiraglia DJ, Raval A, Wu YZ, Rush LJ, Ross P, Molina JR: A comprehensive search for DNA amplification in lung cancer identifies inhibitors of apoptosis cIAP1 and cIAP2 as candidate oncogenes. Hum Mol Genet. 2003, 12: 791-801. 10.1093/hmg/ddg083.Bashyam MD, Bair R, Kim YH, Wang P, Hernandez-Boussard T, Karikari CA, Tibshirani R, Maitra A, Pollack JR: Array-based comparative genomic hybridization identifies localized DNA amplifications and homozygous deletions in pancreatic cancer. Neoplasia. 2005, 7: 556-562. 10.1593/neo.04586.Helias-Rodzewicz Z, Perot G, Chibon F, Ferreira C, Lagarde P, Terrier P, Coindre JM, Aurias A: YAP1 And VGLL3, encoding two cofactors of TEAD transcription factors, are amplified and overexpressed in a subset of soft tissue sarcomas. Genes Chromosomes Cancer. 2010, 49: 1161-1171. 10.1002/gcc.20825.Fernandez LA, Northcott PA, Dalton J, Fraga C, Ellison D, Angers S, Taylor MD, Kenney AM: YAP1 Is amplified and up-regulated in hedgehog-associated medulloblastomas and mediates sonic hedgehog-driven neural precursor proliferation. Genes Dev. 2009, 23: 2729-2741. 10.1101/gad.1824509.Muramatsu T, Imoto I, Matsui T, Kozaki K, Haruki S, Sudol M, Shimada Y, Tsuda H, Kawano T, Inazawa J: YAP is a candidate oncogene for esophageal squamous cell carcinoma. Carcinogenesis. 2010, 32: 389-398.Chigurupati S, Venkataraman R, Barrera D, Naganathan A, Madan M, Paul L, Pattisapu JV, Kyriazis GA, Sugaya K, Bushnev S: Receptor channel TRPC6 is a key mediator of notch-driven glioblastoma growth and invasiveness. Cancer Res. 2010, 70: 418-427. 10.1158/0008-5472.CAN-09-2654.Ding X, He Z, Zhou K, Cheng J, Yao H, Lu D, Cai R, Jin Y, Dong B, Xu Y, Wang Y: Essential role of TRPC6 channels in G2/M phase transition and development of human glioma. J Natl Cancer Inst. 2010, 102: 1052-1068. 10.1093/jnci/djq217.Lansford CDGR, Bier H: Head and neck cancers. 1999, Dordrecht: Kluwer Academic Pressvan den Ijssel P, Tijssen M, Chin SF, Eijk P, Carvalho B, Hopmans E, Holstege H, Bangarusamy DK, Jonkers J, Meijer GA: Human and mouse oligonucleotide-based array CGH. Nucleic Acids Res. 2005, 33: e192-10.1093/nar/gni191.Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods. 2001, 25: 402-408. 10.1006/meth.2001.1262.Gollin SM: Chromosomal alterations in squamous cell carcinomas of the head and neck: window to the biology of disease. Head Neck. 2001, 23: 238-253. 10.1002/1097-0347(200103)23:33.0.CO;2-H.Smeets SJ, Braakhuis BJ, Abbas S, Snijders PJ, Ylstra B, van de Wiel MA, Meijer GA, Leemans CR, Brakenhoff RH: Genome-wide DNA copy number alterations in head and neck squamous cell carcinomas with or without oncogene-expressing human papillomavirus. Oncogene. 2006, 25: 2558-2564. 10.1038/sj.onc.1209275.Snijders AM, Schmidt BL, Fridlyand J, Dekker N, Pinkel D, Jordan RC, Albertson DG: Rare amplicons implicate frequent deregulation of cell fate specification pathways in oral squamous cell carcinoma. Oncogene. 2005, 24: 4232-4242. 10.1038/sj.onc.1208601.Canel M, Secades P, Garzon-Arango M, Allonca E, Suarez C, Serrels A, Frame M, Brunton V, Chiara MD: Involvement of focal adhesion kinase in cellular invasion of head and neck squamous cell carcinomas via regulation of MMP-2 expression. Br J Cancer. 2008, 98: 1274-1284. 10.1038/sj.bjc.6604286.Canel M, Secades P, Rodrigo JP, Cabanillas R, Herrero A, Suarez C, Chiara MD: Overexpression of focal adhesion kinase in head and neck squamous cell carcinoma is independent of fak gene copy number. Clin Cancer Res. 2006, 12: 3272-3279. 10.1158/1078-0432.CCR-05-1583.Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L, Bayani N, Coppe JP, Tong F: A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell. 2006, 10: 515-527. 10.1016/j.ccr.2006.10.008.Jarvinen AK, Autio R, Kilpinen S, Saarela M, Leivo I, Grenman R, Makitie AA, Monni O: High-resolution copy number and gene expression microarray analyses of head and neck squamous cell carcinoma cell lines of tongue and larynx. Genes Chromosomes Cancer. 2008, 47: 500-509. 10.1002/gcc.20551.Lockwood WW, Chari R, Coe BP, Girard L, Macaulay C, Lam S, Gazdar AF, Minna JD, Lam WL: DNA amplification is a ubiquitous mechanism of oncogene activation in lung and other cancers. Oncogene. 2008, 27: 4615-4624. 10.1038/onc.2008.98.Weber A, Hengge UR, Stricker I, Tischoff I, Markwart A, Anhalt K, Dietz A, Wittekind C, Tannapfel A: Protein microarrays for the detection of biomarkers in head and neck squamous cell carcinomas. Hum Pathol. 2007, 38: 228-238. 10.1016/j.humpath.2006.07.012.Pacheco MM, Kowalski LP, Nishimoto IN, Brentani MM: Differential expression of c-jun and c-fos mRNAs in squamous cell carcinoma of the head and neck: associations with uPA, gelatinase B, and matrilysin mRNAs. Head Neck. 2002, 24: 24-32. 10.1002/hed.10009.Xie M, Sun Y, Li Y: Expression of matrix metalloproteinases in supraglottic carcinoma and its clinical implication for estimating lymph node metastases. Laryngoscope. 2004, 114: 2243-2248. 10.1097/01.mlg.0000149467.18822.59.Werner JA, Rathcke IO, Mandic R: The role of matrix metalloproteinases in squamous cell carcinomas of the head and neck. Clin Exp Metastasis. 2002, 19: 275-282. 10.1023/A:1015531319087.Zhang L, Ye DX, Pan HY, Wei KJ, Wang LZ, Wang XD, Shen GF, Zhang ZY: Yes-associated protein promotes cell proliferation by activating Fos related activator-1 in oral squamous cell carcinoma. Oral Oncol. 2011, 47: 693-697. 10.1016/j.oraloncology.2011.06.003.Yokoyama T, Osada H, Murakami H, Tatematsu Y, Taniguchi T, Kondo Y, Yatabe Y, Hasegawa Y, Shimokata K, Horio Y: YAP1 Is involved in mesothelioma development and negatively regulated by Merlin through phosphorylation. Carcinogenesis. 2008, 29: 2139-2146. 10.1093/carcin/bgn200.Diep CH, Zucker KM, Hostetter G, Watanabe A, Hu C, Munoz RM, Von Hoff DD, Han H: Down-regulation of Yes associated protein 1 expression reduces cell proliferation and clonogenicity of pancreatic cancer cells. PLoS One. 7: e32783-Kang W, Tong JH, Chan AW, Lee TL, Lung RW, Leung PP, So KK, Wu K, Fan D, Yu J: Yes-associated protein 1 exhibits oncogenic property in gastric cancer and its nuclear accumulation associates with poor prognosis. Clin Cancer Res. 2011, 17: 2130-2139. 10.1158/1078-0432.CCR-10-2467.Overholtzer M, Zhang J, Smolen GA, Muir B, Li W, Sgroi DC, Deng CX, Brugge JS, Haber DA: Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc Natl Acad Sci U S A. 2006, 103: 12405-12410. 10.1073/pnas.0605579103.Guilbert A, Dhennin-Duthille I, Hiani YE, Haren N, Khorsi H, Sevestre H, Ahidouch A, Ouadid-Ahidouch H: Expression of TRPC6 channels in human epithelial breast cancer cells. BMC Cancer. 2008, 8: 125-10.1186/1471-2407-8-125.Yue D, Wang Y, Xiao JY, Wang P, Ren CS: Expression of TRPC6 in benign and malignant human prostate tissues. Asian J Androl. 2009, 11: 541-547. 10.1038/aja.2009.53.Cai R, Ding X, Zhou K, Shi Y, Ge R, Ren G, Jin Y, Wang Y: Blockade of TRPC6 channels induced G2/M phase arrest and suppressed growth in human gastric cancer cells. Int J Cancer. 2009, 125: 2281-2287. 10.1002/ijc.24551.Shi Y, Ding X, He ZH, Zhou KC, Wang Q, Wang YZ: Critical role of TRPC6 channels in G2 phase transition and the development of human oesophageal cancer. Gut. 2009, 58: 1443-1450. 10.1136/gut.2009.181735.Thebault S, Flourakis M, Vanoverberghe K, Vandermoere F, Roudbaraki M, Lehen’kyi V, Slomianny C, Beck B, Mariot P, Bonnal JL: Differential role of transient receptor potential channels in Ca2+ entry and proliferation of prostate cancer epithelial cells. Cancer Res. 2006, 66: 2038-2047. 10.1158/0008-5472.CAN-05-0376.El Boustany C, Bidaux G, Enfissi A, Delcourt P, Prevarskaya N, Capiod T: Capacitative calcium entry and transient receptor potential canonical 6 expression control human hepatoma cell proliferation. Hepatology. 2008, 47: 2068-2077. 10.1002/hep.22263

    COVID

    No full text

    A descriptive profile of β-thalassaemia mutations in India, Pakistan and Sri Lanka

    No full text
    Thalassaemia is a common and debilitating autosomal recessive disorder affecting many populations in South Asia. To date, efforts to create a regional profile of β-thalassaemia mutations have largely concentrated on the populations of India. The present study updates and expands an earlier profile of β-thalassaemia mutations in India, and incorporates comparable data from Pakistan and Sri Lanka. Despite limited data availability, clear patterns of historical and cultural population movements were observed relating to major β-thalassaemia mutations. The current regional mutation profiles of β-thalassaemia have been influenced by historical migrations into and from the Indian sub-continent, by the development and effects of Hindu, Buddhist, Muslim and Sikh religious traditions, and by the major mid-twentieth century population translocations that followed the Partition of India in 1947. Given the resultant genetic complexity revealed by the populations of India, Pakistan and Sri Lanka, to ensure optimum diagnostic efficiency and the delivery of appropriate care, it is important that screening and counselling programmes for β-thalassaemia mutations recognise the underlying patterns of population sub-division throughout the region
    corecore