41 research outputs found

    Suboptimal Activation of Antigen-Specific CD4+ Effector Cells Enables Persistence of M. tuberculosis In Vivo

    Get PDF
    Adaptive immunity to Mycobacterium tuberculosis controls progressive bacterial growth and disease but does not eradicate infection. Among CD4+ T cells in the lungs of M. tuberculosis-infected mice, we observed that few produced IFN-γ without ex vivo restimulation. Therefore, we hypothesized that one mechanism whereby M. tuberculosis avoids elimination is by limiting activation of CD4+ effector T cells at the site of infection in the lungs. To test this hypothesis, we adoptively transferred Th1-polarized CD4+ effector T cells specific for M. tuberculosis Ag85B peptide 25 (P25TCRTh1 cells), which trafficked to the lungs of infected mice and exhibited antigen-dependent IFN-γ production. During the early phase of infection, ∼10% of P25TCRTh1 cells produced IFN-γ in vivo; this declined to <1% as infection progressed to chronic phase. Bacterial downregulation of fbpB (encoding Ag85B) contributed to the decrease in effector T cell activation in the lungs, as a strain of M. tuberculosis engineered to express fbpB in the chronic phase stimulated P25TCRTh1 effector cells at higher frequencies in vivo, and this resulted in CD4+ T cell-dependent reduction of lung bacterial burdens and prolonged survival of mice. Administration of synthetic peptide 25 alone also increased activation of endogenous antigen-specific effector cells and reduced the bacterial burden in the lungs without apparent host toxicity. These results indicate that CD4+ effector T cells are activated at suboptimal frequencies in tuberculosis, and that increasing effector T cell activation in the lungs by providing one or more epitope peptides may be a successful strategy for TB therapy

    EspA Acts as a Critical Mediator of ESX1-Dependent Virulence in Mycobacterium tuberculosis by Affecting Bacterial Cell Wall Integrity

    Get PDF
    Mycobacterium tuberculosis (Mtb) requires the ESX1 specialized protein secretion system for virulence, for triggering cytosolic immune surveillance pathways, and for priming an optimal CD8+ T cell response. This suggests that ESX1 might act primarily by destabilizing the phagosomal membrane that surrounds the bacterium. However, identifying the primary function of the ESX1 system has been difficult because deletion of any substrate inhibits the secretion of all known substrates, thereby abolishing all ESX1 activity. Here we demonstrate that the ESX1 substrate EspA forms a disulfide bonded homodimer after secretion. By disrupting EspA disulfide bond formation, we have dissociated virulence from other known ESX1-mediated activities. Inhibition of EspA disulfide bond formation does not inhibit ESX1 secretion, ESX1-dependent stimulation of the cytosolic pattern receptors in the infected macrophage or the ability of Mtb to prime an adaptive immune response to ESX1 substrates. However, blocking EspA disulfide bond formation severely attenuates the ability of Mtb to survive and cause disease in mice. Strikingly, we show that inhibition of EspA disulfide bond formation also significantly compromises the stability of the mycobacterial cell wall, as does deletion of the ESX1 locus or individual components of the ESX1 system. Thus, we demonstrate that EspA is a major determinant of ESX1-mediated virulence independent of its function in ESX1 secretion. We propose that ESX1 and EspA play central roles in the virulence of Mtb in vivo because they alter the integrity of the mycobacterial cell wall

    Single origin of sex chromosomes and multiple origins of B chromosomes in fish genus Characidium

    Get PDF
    Chromosome painting with DNA probes obtained from supernumerary (B) and sex chromosomes in three species of fish genus Characidium (C. gomesi, C. pterostictum and C. oiticicai) showed a close resemblance in repetitive DNA content between B and sex chromosomes in C. gomesi and C. pterostictum. This suggests an intraspecific origin for B chromosomes in these two species, probably deriving from sex chromosomes. In C. oiticicai, however, a DNA probe obtained from its B chromosome hybridized with the B but not with the A chromosomes, suggesting that the B chromosome in this species could have arisen interspecifically, although this hypothesis needs further investigation. A molecular phylogenetic analysis performed on nine Characidium species, with two mtDNA genes, showed that the presence of heteromorphic sex chromosomes in these species is a derived condition, and that their origin could have been unique, a conclusion also supported by interspecific chromosome painting with a CgW probe derived from the W chromosome in C. gomesi. Summing up, our results indicate that whereas heteromorphic sex chromosomes in the genus Characidium appear to have had a common and unique origin, B chromosomes may have had independent origins in different species. Our results also show that molecular phylogenetic analysis is an excellent complement for cytogenetic studies by unveiling the direction of evolutionary chromosome changes.This research was funded by grants from the State of Sao Paulo Research Foundation (FAPESP) to EAS (2013/02143-3), grants from National Council for Research and Development (CNPq) to FF (480449/2012-0), and by Coordenacao de Aperfeicoamento de Pessoal de Nıvel Superior (CAPES)

    Parsimonious Higher-Order Hidden Markov Models for Improved Array-CGH Analysis with Applications to Arabidopsis thaliana

    Get PDF
    Array-based comparative genomic hybridization (Array-CGH) is an important technology in molecular biology for the detection of DNA copy number polymorphisms between closely related genomes. Hidden Markov Models (HMMs) are popular tools for the analysis of Array-CGH data, but current methods are only based on first-order HMMs having constrained abilities to model spatial dependencies between measurements of closely adjacent chromosomal regions. Here, we develop parsimonious higher-order HMMs enabling the interpolation between a mixture model ignoring spatial dependencies and a higher-order HMM exhaustively modeling spatial dependencies. We apply parsimonious higher-order HMMs to the analysis of Array-CGH data of the accessions C24 and Col-0 of the model plant Arabidopsis thaliana. We compare these models against first-order HMMs and other existing methods using a reference of known deletions and sequence deviations. We find that parsimonious higher-order HMMs clearly improve the identification of these polymorphisms. Moreover, we perform a functional analysis of identified polymorphisms revealing novel details of genomic differences between C24 and Col-0. Additional model evaluations are done on widely considered Array-CGH data of human cell lines indicating that parsimonious HMMs are also well-suited for the analysis of non-plant specific data. All these results indicate that parsimonious higher-order HMMs are useful for Array-CGH analyses. An implementation of parsimonious higher-order HMMs is available as part of the open source Java library Jstacs (www.jstacs.de/index.php/PHHMM)

    Delimiting the Origin of a B Chromosome by FISH Mapping, Chromosome Painting and DNA Sequence Analysis in Astyanax paranae (Teleostei, Characiformes)

    Get PDF
    Supernumerary (B) chromosomes have been shown to contain a wide variety of repetitive sequences. For this reason, fluorescent in situ hybridisation (FISH) is a useful tool for ascertaining the origin of these genomic elements, especially when combined with painting from microdissected B chromosomes. In order to investigate the origin of B chromosomes in the fish species Astyanax paranae, these two approaches were used along with PCR amplification of specific DNA sequences obtained from the B chromosomes and its comparison with those residing in the A chromosomes. Remarkably, chromosome painting with the one-arm metacentric B chromosome probe showed hybridization signals on entire B chromosome, while FISH mapping revealed the presence of H1 histone and 18S rDNA genes symmetrically placed in both arms of the B chromosome. These results support the hypothesis that the B chromosome of A. paranae is an isochromosome. Additionally, the chromosome pairs Nos. 2 or 23 are considered the possible B chromosome ancestors since both contain syntenic H1 and 18S rRNA sequences. The analysis of DNA sequence fragments of the histone and rRNA genes obtained from the microdissected B chromosomes showed high similarity with those obtained from 0B individuals, which supports the intraspecific origin of B chromosomes in A. paranae. Finally, the population hereby analysed showed a female-biased B chromosome presence suggesting that B chromosomes in this species could influence sex determinism.This research was funded by grants from the State of São Paulo Research Foundation (FAPESP) to DMZAS (2011/16825-3) and CO (2010/17009-2), grants from National Council for Research and Development (CNPq) to FF and by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

    Trophic macrophages in development and disease

    Get PDF
    Specialized phagocytes are found in the most primitive multicellular organisms. Their roles in homeostasis and in distinguishing self from non-self have evolved with the complexity of organisms and their immune systems. Equally important, but often overlooked, are the roles of macrophages in tissue development. As discussed in this Review, these include functions in branching morphogenesis, neuronal patterning, angiogenesis, bone morphogenesis and the generation of adipose tissue. In each case, macrophage depletion impairs the formation of the tissue and compromises its function. I argue that in several diseases, the unrestrained acquisition of these developmental macrophage functions exacerbates pathology. For example, macrophages enhance tumour progression and metastasis by affecting tumour-cell migration and invasion, as well as angiogenesis

    Perspectives on the mesenchymal origin of metastatic cancer

    Full text link
    corecore