773 research outputs found

    The Meaning of Memory Safety

    Full text link
    We give a rigorous characterization of what it means for a programming language to be memory safe, capturing the intuition that memory safety supports local reasoning about state. We formalize this principle in two ways. First, we show how a small memory-safe language validates a noninterference property: a program can neither affect nor be affected by unreachable parts of the state. Second, we extend separation logic, a proof system for heap-manipulating programs, with a memory-safe variant of its frame rule. The new rule is stronger because it applies even when parts of the program are buggy or malicious, but also weaker because it demands a stricter form of separation between parts of the program state. We also consider a number of pragmatically motivated variations on memory safety and the reasoning principles they support. As an application of our characterization, we evaluate the security of a previously proposed dynamic monitor for memory safety of heap-allocated data.Comment: POST'18 final versio

    A novel multivariate STeady-state index during general ANesthesia (STAN)

    Get PDF
    The assessment of the adequacy of general anesthesia for surgery, namely the nociception/anti-nociception balance, has received wide attention from the scientific community. Monitoring systems based on the frontal EEG/EMG, or autonomic state reactions (e.g. heart rate and blood pressure) have been developed aiming to objectively assess this balance. In this study a new multivariate indicator of patients' steady-state during anesthesia (STAN) is proposed, based on wavelet analysis of signals linked to noxious activation. A clinical protocol was designed to analyze precise noxious stimuli (laryngoscopy/intubation, tetanic, and incision), under three different analgesic doses; patients were randomized to receive either remifentanil 2.0, 3.0 or 4.0 ng/ml. ECG, PPG, BP, BIS, EMG and [Formula: see text] were continuously recorded. ECG, PPG and BP were processed to extract beat-to-beat information, and [Formula: see text] curve used to estimate the respiration rate. A combined steady-state index based on wavelet analysis of these variables, was applied and compared between the three study groups and stimuli (Wilcoxon signed ranks, Kruskal-Wallis and Mann-Whitney tests). Following institutional approval and signing the informed consent thirty four patients were enrolled in this study (3 excluded due to signal loss during data collection). The BIS index of the EEG, frontal EMG, heart rate, BP, and PPG wave amplitude changed in response to different noxious stimuli. Laryngoscopy/intubation was the stimulus with the more pronounced response [Formula: see text]. These variables were used in the construction of the combined index STAN; STAN responded adequately to noxious stimuli, with a more pronounced response to laryngoscopy/intubation (18.5-43.1 %, [Formula: see text]), and the attenuation provided by the analgesic, detecting steady-state periods in the different physiological signals analyzed (approximately 50 % of the total study time). A new multivariate approach for the assessment of the patient steady-state during general anesthesia was developed. The proposed wavelet based multivariate index responds adequately to different noxious stimuli, and attenuation provided by the analgesic in a dose-dependent manner for each stimulus analyzed in this study.The first author was supported by a scholarship from the Portuguese Foundation for Science and Technology (FCT SFRH/BD/35879/2007). The authors would also like to acknowledge the support of UISPA—System Integration and Process Automation Unit—Part of the LAETA (Associated Laboratory of Energy, Transports and Aeronautics) a I&D Unit of the Foundation for Science and Technology (FCT), Portugal. FCT support under project PEst-OE/EME/LA0022/2013.info:eu-repo/semantics/publishedVersio

    Diversity of lactic acid bacteria of the bioethanol process

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bacteria may compete with yeast for nutrients during bioethanol production process, potentially causing economic losses. This is the first study aiming at the quantification and identification of Lactic Acid Bacteria (LAB) present in the bioethanol industrial processes in different distilleries of Brazil.</p> <p>Results</p> <p>A total of 489 LAB isolates were obtained from four distilleries in 2007 and 2008. The abundance of LAB in the fermentation tanks varied between 6.0 × 10<sup>5 </sup>and 8.9 × 10<sup>8 </sup>CFUs/mL. Crude sugar cane juice contained 7.4 × 10<sup>7 </sup>to 6.0 × 10<sup>8 </sup>LAB CFUs. Most of the LAB isolates belonged to the genus <it>Lactobacillus </it>according to rRNA operon enzyme restriction profiles. A variety of <it>Lactobacillus </it>species occurred throughout the bioethanol process, but the most frequently found species towards the end of the harvest season were <it>L. fermentum </it>and <it>L. vini</it>. The different rep-PCR patterns indicate the co-occurrence of distinct populations of the species <it>L. fermentum </it>and <it>L. vini</it>, suggesting a great intraspecific diversity. Representative isolates of both species had the ability to grow in medium containing up to 10% ethanol, suggesting selection of ethanol tolerant bacteria throughout the process.</p> <p>Conclusions</p> <p>This study served as a first survey of the LAB diversity in the bioethanol process in Brazil. The abundance and diversity of LAB suggest that they have a significant impact in the bioethanol process.</p

    Characterization of the behavior of carotenoids from pitanga (Eugenia uniflora) and buriti (Mauritia flexuosa) during microemulsion production and in a dynamic gastrointestinal system

    Get PDF
    Uncommon tropical fruits are emerging as raw-material for new food products with health benefits. This work aimed at formulating and processing microemulsions from pitanga (Eugenia uniflora) and buriti (Mauritia flexuosa) fruits, since they are very rich in carotenoids (particularly lycopene and -carotene), in order to encapsulate and increase carotenoids bioaccessibility. Pitanga and buriti microemulsions were produced by applying a direct processing (high-speed homogenization at 15,000 rpm and ultrasound with 20 kHz probe at 40% amplitude) of the whole pulp together with surfactant (Tween 80 or Whey Protein Isolate at 2%) and corn oil (5%). All treatments (HSHUS for 04, 40, 44, 48 minmin) applied were able to increase the amount of carotenoid released. However, the processing also decreased the total amount of carotenoids in the whole pulp of studied fruits. The impact of processing during microemulsion production was not severe. The overall data suggest that the presence of surfactant and oil during processing may protect the carotenoids in fruits and microemulsions. Final recovery of total carotenoids, after passing the samples through a dynamic gastrointestinal system that simulates the human digestion, was higher for microemulsions than for whole pulps. High losses of total carotenoids in buriti and -carotene and lycopene in pitanga occurred during jejunum and ileum phases. The present work confirms that it is possible to increase -carotene and lycopene bioaccessibility from fruits by directly processing microemulsions (p<0.01).This work was supported by the São Paulo Research Foundation—FAPESP through research funding [Grant #2015/15507-9] and Ph.D. scholarship for Paulo Berni [Grant #2014/15119-6] and a Research Internships Abroad (BEPE) support [Grant #2016/13355-0]. The author Ana C. Pinheiro is recipient of a fellowship from the Portuguese Foundation for Science and Technology (FCT) [Grant SFRH/BPD/101181/2014]info:eu-repo/semantics/publishedVersio
    corecore