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1 Introduction

The possible existence of a superconformal field theory with (2, 0) supersymmetry in six

dimensions was first pointed out in [1]. A string theory origin for such a conformal field

theory (CFT) was proposed in [2] and the theory was then identified as a candidate for

the description of the low-energy dynamics of M5-branes, important but elusive degrees of

freedom (DOF) in M-theory [3]. In recent years, the theory has also played a crucial role in

various developments in mathematical physics, with particular attention being devoted to

the classification of BPS observables and the study of their properties both in six dimensions

and, upon compactification, in lower dimensions.1

The N = (2, 0) theory is also interesting from the point of view of the theory space

of quantum field theory. This space is governed by the renormalisation group flow [5] in

which fixed points, i.e. conformal field theories [6], are an essential feature. It is known

that six dimensions is the highest dimension of spacetime that permits a theory with

superconformal symmetries [1]. The very existence of a six-dimensional CFT is surprising

because power-counting makes it difficult to write down interacting theories (except for a

scalar φ3 coupling, which does not satisfy the requirement of positive definiteness of the

energy) involving a dimensionless constant in dimensions higher than four.

Despite the importance of the N = (2, 0) theory and the attention it has attracted in

recent years, there is no consensus on whether it should admit a Lagrangian formulation.

Various obstructions exist to the realisation of superconformal symmetry in a conventional

six-dimensional local field theory. Several Lagrangian constructions have been proposed,

including the matrix model approach involving a low-energy limit [7, 8], the dimensional

deconstruction approach [9], and the decompactification limit of d = 5 maximally su-

persymmetric Yang-Mills theory [10, 11]. For other proposals, see [12–17] and references

therein. Another interesting approach is based on the idea of the conformal bootstrap [18],

which does not rely on the existence of a Lagrangian.

Although the use of the bootstrap method may render a Lagrangian description unnec-

essary, having an explicit Lagrangian formulation is desirable for a better understanding of

the fundamental DOF of the (2, 0) theory. Such a description would also clarify the rela-

tionship of the (2, 0) CFT in d = 6 to lower dimensional maximally supersymmetric theories

and in particular the N = 4 super Yang-Mills (SYM) theory in four dimensions. Moreover,

although the (2, 0) CFT is inherently non-perturbative, as implied by its M-theory origin, a

Lagrangian description should make it possible to construct reliable weak-coupling approx-

imation schemes valid in special sectors and/or for special observables, such as near-BPS

quantities. These ideas were exploited in [19, 20] in the case of the ABJM theory [21] — the

maximally supersymmetric CFT in three dimensions, associated with coincident M2-branes

— which is also intrinsically strongly coupled. In [19], using the AdS/CFT correspondence,

a perturbative analysis of the spectrum in a special sector of the ABJM theory was success-

fully compared to the dual AdS description provided by the pp-wave matrix model [22].

In this paper we propose developing a Lagrangian for the N = (2, 0) theory in six di-

mensions, using String Field Theory (SFT) in light-cone gauge. The use of light-cone gauge

1A review by G. Moore including a detailed list of references can be found in ref. [4].
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is key to our approach since it allows us in principle to determine the interacting theory

by a fairly straightforward — albeit technically involved — closure of the supersymmetry

algebra [23, 24].

It has been argued that the six-dimensional (2, 0) theory contains tensionless string

DOF. In particular, in the M-theory construction in which the (2, 0) theory describes

the low-energy dynamics of a collection of M5-branes, the strings arise from M2-branes

stretched between M5-branes. When the M5-branes are coincident the M2-branes reduce

to closed strings in the world-volume of the M5-branes. Such strings are tensionless as their

tension is proportional to the (constant) M2-brane tension times the separation between the

M5-branes. While of course this construction does not imply that the fundamental DOF in

the effective theory describing the world-volume dynamics of coincident M5-branes should

be tensionless strings, it is certainly natural to consider such a possibility.

In the case of the four-dimensional N = 4 SYM theory, open strings ending on N coin-

cident D3-branes give rise to matrix-valued point-like DOF. Similarly, when considering a

stack of N coincident M5-branes, there are N×N configurations of M2-branes ending on the

M5-branes, with each cylindrical M2-brane degenerating to a closed string constrained to

the six-dimensional world-volume of the M5-branes. Therefore we obtain a six-dimensional

matrix-valued closed string theory, that we will formulate using the language of string field

theory in light-cone gauge.

The approach that we propose in this paper is to construct directly a theory of ten-

sionless strings in six dimensions, using the light-cone string field theory formalism, rather

than to take the tensionless limit in a theory with tension. The main reason leading us

to this choice is that the zero tension limit of an ordinary tensile string theory is prob-

lematic and not well understood.2 This is analogous to the case of general quantum field

theories, in which taking a zero mass limit often requires careful analysis. The most appro-

priate procedure to study such a limit would involve computing physical observables and

then taking the limit on these. However, the conventional first quantised formulation of

string theory, in our present understanding, only allows one to compute S-matrix elements,

whereas the good observables in a conformal field theory such as the one we are trying to

construct are expected to be local correlation functions. Since local correlators in tensile

string theory are not understood and, further, S-matrix elements in the tensionless limit

can be singular and at least not straightforward to define, we propose to construct the

(2, 0) CFT directly as a tensionless string theory in six dimensions rather than trying to

define it as the tensionless limit of some string theory with tension.

The fact that the tensile strings and the (2, 0) CFT should have fundamentally different

natural observables also supports our choice to use a second-quantised, string field theory,

2The zero tension limit of ordinary tensile string theory has been studied by many authors in connection

with higher spin gauge theories. For an overview and references see [25]. The tensionless limit of bosonic

covariant SFT [26] was studied in [27], where the possibility of formulating the (2, 0) CFT as the zero tension

limit of SFT was also mentioned. Early work on tensionless strings includes [28–39]. Some discussions on

the tensionless limit can be found in [40] and references therein.
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formulation.3 This formalism should prove better suited to the study of the observables

of a CFT. Further support for such an approach follows from the analogy with the case

of point particles. The world-line (first quantised) formalism is not straightforward for the

study of massless particles, which instead are simple to describe in the field theory (second

quantised) language.

Our approach may be compared to the standard treatment of Yang-Mills theory. As

is well known, it is easier to work with massless Yang-Mills theory directly, rather than

thinking of it as a limit of a theory of massive interacting vector particles, the essential

reason being the gauge symmetry of the theory in the massless case. One of course also

uses the second-quantised field theory formalism, rather than a first-quantised formulation,

for Yang-Mills theory.

A particular virtue of our approach regards the dimension of the coupling constant. In

traditional field theory, the dimension of the coupling constant depends on the dimension

of spacetime. This renders the program of writing down an interacting d = 6 Lagrangian,

in particular with the correct supersymmetry, very difficult. In contrast, the physical

dimensions of the coupling constant do not depend on the spacetime dimension in SFT

and therefore, in principle, no obstruction arises from power counting arguments. We

elaborate on this point in section 5.1.

Another promising feature in our proposal is related to dimensional reduction. The six-

dimensional (2,0) theory is expected to reduce to the N = 4 SYM theory in four dimensions

when compactified on a torus. The coupling constant of the reduced theory, gYM , is given

by the formula 1
g2YM

∼ R1
R2

, where R1 and R2 are the two compactification radii. Although

the dependence on R1, in this formula, can be easily understood in terms of a standard

Kaluza-Klein reduction, the dependence on R2 is much harder to understand in the context

of an ordinary local field theory. Using (tensionless) string DOF, on the other hand, means

that wrapped strings play a role in the reduction, thus introducing a distinction between

the two compactification radii. This may lead to a mechanism for generating the required

dependence on R2 in the formula for the four-dimensional coupling constant.

The choice of light-cone gauge allows one to focus exclusively on the physical DOF

and in this gauge symmetry constraints can be more directly implemented, so that one can

restrict or even determine the theory purely from symmetry considerations. This idea of

determining the interacting Hamiltonian by requiring the closure of the symmetry algebra

has proven extremely fruitful in the past [41–44]. In particular, the entire N = 4 SYM

theory — for which the light-cone superspace formulation was first obtained in [23, 45] —

can be derived from closure of the superconformal algebra [46]. The action describing light-

cone superstring field theory in ten dimensions has also been derived to cubic order in this

way in [47–50] and the full Lorentz symmetry of the theory up to cubic order was verified

in [51]. We also recall that light-cone gauge bosonic string field theory was developed in [52–

58] and a detailed study of the Lorentz invariance of the theory was presented in [53, 59–64].

3The distinction between the first quantised and the second quantised formulations is important at the

interacting level. For the free part, the two descriptions are directly related to each other, in particular in

the light-cone gauge.
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Our aim is to construct an interacting theory of tensionless strings having the right

amount of supersymmetry and a dimensionless coupling constant (which is a necessary

condition for the scale invariance of the model) in six space-time dimensions.4 In this

paper, we present the construction of the quadratic and cubic parts of the SFT action.

We formulate an ansatz, which we justify by using (part of) the restrictions imposed

by the closure of the supersymmetry algebra. The cubic vertices that we obtain still

contain two arbitrary parameters. Our construction is based upon the light-cone superspace

formulation of the free particle with (2, 0) supersymmetry in six dimensions [65, 66].

Our approach combines features of both the light-cone formulation of N = 4 SYM and

the supersymmetric closed SFT. It is similar to the former since our aim is to formulate a

theory with tensionless (massless), matrix-valued DOF and sixteen supercharges, while it

resembles the latter because we are trying to construct a theory of closed strings.

This paper is organised as follows. In section 2, we review the relevant symmetries

of the theory and explain our notation, with further details in appendices A and B. In

section 3, we introduce the string field, and give the free part, i.e. the part which is quadratic

in the string fields, of the symmetry charges. In section 4, we explain the notation necessary

for describing the cubic interaction part, and introduce the two essential ingredients, the

overlap and the insertion. Section 5 presents the ansatz for the cubic vertices, and shows

that the ansatz is consistent with the supersymmetry algebra. A discussion of power

counting is also presented. In section 6 we conclude with a discussion. Details involved in

some of the definitions and computations are deferred to several appendices.

2 Symmetries and notation

The theory we are interested in exhibits N = (2, 0) super-Poincaré symmetry and its

superconformal extension. The associated R-symmetry is USp(4) [1, 67, 68].

We choose the metric with signature (−,+, . . . ,+) and introduce the light-cone coor-

dinates

x+ =
1√
2

(x0 + x5) , x− =
1√
2

(x0 − x5) . (2.1)

We denote the four transverse directions by xα, α = 1, 2, 3, 4. x+ plays the role of time

implying that −P+ = P− is the light-cone Hamiltonian. As is often done, we work on a

surface defined by x+ = 0.

An SO(4) subgroup of the original SO(1,5) Lorentz symmetry, acting on the transverse

directions xα, remains manifest. We introduce capital indices, A,B, . . . = 1, 2, 3, 4, for

the R-symmetry and lower case undotted and dotted indices, a, b, . . ., ȧ, ḃ, . . . = 1, 2, to

represent the SO(4)=SU(2)×SU(2) spinor indices.

The generators of the super-Poincaré algebra split into two varieties. The kinematical

generators

P+, QKaA, Pα,M
αβ ,M+α,M+− , (2.2)

4We expect that, as in the case of N = 4 SYM in four-dimensions, the classical scale invariance is not

broken by quantum effects.
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which do not pick up corrections in the interacting theory, and the dynamical generators

P−, QDȧA,M
−α , (2.3)

which do. When there is a possible ambiguity, such as in the case of the supercharges, we

use subscripts, K and D, to differentiate between kinematical and dynamical generators.

Dynamical generators transform fields non-linearly, while kinematical generators act lin-

early on the fields. In this light-cone formalism, the super-Poincaré algebra imposes strong

constraints on the theory, including on the Hamiltonian, P−. These symmetry algebra

constraints are what we will use to determine the interacting Hamiltonian. The entire

super-Poincaré symmetry algebra is presented in appendix B.

We will not consider the closure of the full superconformal algebra and will instead

focus on just the super-Poincaré part of the algebra. We believe that this part of the super-

algebra, together with the requirement of a dimensionless coupling constant, is sufficient

to determine the ansatz. It would also be interesting to examine the entire superconformal

symmetry, as was done previously for N = 4 SYM [46].

3 The free theory

Our study of the free theory begins with the superfield functional

φIP+ [xα(σ), θaA(σ)] . (3.1)

We do not write the dependence on the time coordinate x+ explicitly. The string field

depends on the total momentum P+ and not on the momentum density p+(σ), because the

choice of the light-cone gauge condition implies that p+(σ) does not depend on σ [69]. The

fermionic coordinates θaA carry both R-symmetry and SO(4) spinor indices. As explained

in the introduction, we expect to have N × N matrix-valued string fields when we have

N M5-branes. We use indices I, J, . . . to label these matrix DOF. We will later fix a Lie

algebra and assume I, J, . . . to be Lie algebra indices running from 1 to the dimension of

the Lie algebra. The σ coordinate takes values in an interval of length [σ]. We choose

− [σ]/2 < σ < [σ]/2 . (3.2)

The length [σ] is taken to be proportional to P+ and the coefficient of proportionality is

denoted by p+, i.e.
P+

[σ]
= p+ . (3.3)

p+ is a conventional constant and it is a c-number (it commutes with everything). The

fermionic coordinates θ1A and θ2A are related by complex conjugation,

θaA = Bā
bB

Ā
Bθ

bB, (3.4)

where Bā
b is proportional to the ε-tensor. For our definition of tensor structures such as the

B’s associated with the light-cone little group SO(4) and the R-symmetry group USp(4),

see appendix A. We will refer to θ1A as θ and θ2A as θ̄ below when appropriate.

– 6 –
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3.1 Chiral derivatives, supersymmetry and level-matching

There are two different formulations of supersymmetric theories in terms of light-cone

superfields. In one approach, one uses superfields which depend only on θ (or θ̄). For

N = 4 SYM in four dimensions, this approach was introduced in [23]. The formulation of

spacetime supersymmetric SFT by Green, Schwarz and Brink [47–50] also belongs to this

class of models. In the other approach, one uses superfields depending on both θ and θ̄,

and certain chirality constraints are imposed, as was done for N = 4 SYM in [45]. While

the former choice has the advantage of being direct, in the latter, formulae for the charges

and the power-counting procedure [70] are more transparent because fermionic coordinates

enter in supercovariant combinations.

We adopt the latter approach. Our superfields depend on both θ and θ̄, i.e. θ1A and

θ2A. We impose the fundamental chirality constraint on our superfield for each value of σ,

d1A(σ)φ = 0 , (3.5)

where the chiral derivative is defined by

daA(σ) =
δ

δθaA(σ)
+
p+

√
2
θbB(σ)εbaCBA . (3.6)

CBA is defined in appendix A.

One can solve the constraint (3.5),

φP+(xα, θ, θ̄) = e
1√
2
p+
∫
θAθ̄AdσΨP+(xα, θ̄) . (3.7)

Here Ψ is an arbitrary superfield depending only on θ̄, which can be identified with the

superfield in an approach analogous to [23, 47–50].

The superstring field is a natural extension of the superfield for a superparticle in

six-dimensional spacetime constructed in [65, 66]. If one focusses on the dependence of

the string field on the zero-mode part of x(σ) and θ(σ), one obtains the superfield for the

superparticle (for each value of the index I). The superfield corresponds to the tensor

multiplet [67] of (2, 0) supersymmetry, and gives the light-cone superfield corresponding

to the N = 4 SYM theory in four-dimensions [45] upon dimensional reduction. This

gives additional support to our idea that the superstring field is a natural choice for the

construction of the (2, 0) theory.5 In particular, it incorporates the self-duality property

of the theory, because the tensor multiplet includes a two-form gauge field with self-dual

field strength. Although our formulation is based on closed string DOF, it is nevertheless

non-gravitational since the tensor multiplet does not contain any field of spin 2.

We introduce the local supersymmetry generator

qaA(σ) =
δ

δθaA(σ)
− p+

√
2
θbB(σ)εbaCBA , (3.8)

5In the degenerate case of a single M5-brane [71], the (2, 0) CFT is conventionally believed to be a free

theory of fields belonging to the tensor multiplet. Putting N = 1 in our case also leads to a free theory with

very many light degrees of freedom including the tensor multiplet associated with the zero mode. There is

no immediate contradiction here since, being free, these fields are completely decoupled.
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which satisfies the following anti-commutation relations

[qaA(σ), qbB(σ′)] = −
√

2p+εabCABδ(σ − σ′) , (3.9)

[qaA(σ), dbB(σ′)] = 0 , (3.10)

[daA(σ), dbB(σ′)] =
√

2p+εabCABδ(σ − σ′) . (3.11)

Here and in the rest of the paper we use square brackets to denote both commutators and

anti-commutators, depending on the Grassmann parity of the operators involved. We also

define

pα(σ) = −i δ

δxα(σ)
. (3.12)

A level matching condition should be imposed on the string fields, which ensures that

the state be invariant under shifts of σ. The condition is related to the requirement of

global existence of x−, ∫
∂x−

∂σ
dσ = 0 , (3.13)

where the bosonic contribution to ∂σx
− is [69]

∂x−

∂σ
=

1

p+
pα
∂xα

∂σ
. (3.14)

When fermionic DOF are incorporated, the level matching condition becomes(∫ (
pα
∂xα

∂σ
− i∂θ

aA

∂σ
(σ)

δ

δθaA(σ)

)
dσ

)
φ = 0 (3.15)

and we have
∂x−

∂σ
=

1

p+

(
pα
∂xα

∂σ
− i∂θ

aA

∂σ
(σ)

δ

δθaA(σ)

)
, (3.16)

which defines x−(σ) up to the zero-mode part

X− =
1

[σ]

∫
x−(σ)dσ . (3.17)

3.2 Generators

We are now in a position to write down the “free” part of the various generators in our

algebra. To simplify our presentation, we will use the language of the first quantised theory:

we present the various charges as operators acting on the string fields. The charges in the

second quantisation formulation can be written down basically by sandwiching the first

quantised charge between φ̄ and φ in the usual way.

We begin by noting that the fist-quantised Hamiltonian for the tensionless string in

the light-cone gauge is simply

P− =

∫
1

2p+
(pα(σ))2 dσ , (3.18)

and does not contain the usual (∂σx
α)2 term which is proportional to the square of the

tension [69]. This formula is unchanged even if one includes fermionic DOF. Equation (3.18)

– 8 –
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shows that, while an ordinary tensile string can be understood as a collection of harmonic

oscillators, a tensionless string is a collection of free particles. Each part of the string moves

independently and all terms involving ∂σ vanish, except for the important level matching

conditions (3.15) and the associated formula for the x− coordinate (3.16). This makes

the construction of the generators (except for M−α) quite easy; we can start from the

superparticle case [65, 66] and we can then simply add the σ-dependence. These properties

may be considered as a direct realisation of the idea of string bits [72, 73].

For the supersymmetry charges we have

QKaA =

∫
qaA(σ)dσ , (3.19)

QDȧA =

∫
1√
2
qbA(σ)

1

p+
εbcpα(σ)σαcȧdσ . (3.20)

Other Poincaré generators include

M+α =

∫
−xα(σ)p+dσ = −XαP+ , (3.21)

Mαβ =

∫ [
xα(σ)pβ(σ)− xβ(σ)pα(σ)− i

√
2

8

1

p+
σαβacε

cbC−1ABqaA(σ)qbB(σ)

]
dσ , (3.22)

and

M+− = −1

2

(
X−P+ + P+X−

)
−
∫

i

2
θaA(σ)

δ

δθaA(σ)
dσ . (3.23)

All three Lorentz generators in (3.21)–(3.23) are kinematical. The only dynamical Lorentz

generator is

M−α =

∫ [
x−(σ)pα(σ)− 1

2

(
xα(σ)p−(σ) + p−(σ)xα(σ)

)
+
i

2
θaA(σ)

δ

δθaA(σ)

pα(σ)

p+

+

√
2

8
i
pγ(σ)

(p+)2
qaA(σ)qbB(σ)σαγabC−1AB

]
dσ . (3.24)

The algebra satisfied by these generators is presented in appendix B. We have explicitly

verified the commutators without taking care of ordering issues in the definition of products

of operators, i.e. only at the level of the Poisson brackets. Useful formulae and an outline

of the computation of the commutator [M−α,M−β ] are presented in appendix C.

The action of the charges on the superfield does not spoil the chirality constraint (3.5)

because the charges are written in terms of q’s which anti-commute with chiral derivatives,

[q(σ), d(σ′)] = 0. For M+− and M−α, which contain θ and δ
δθ explicitly, the consistency

with the chirality constraint needs to be checked. Using arguments similar to those in

appendix C, one can show

[M+−, daA(σ)] =
i

2
daA(σ)− i∂σ(σdaA(σ)) , (3.25)

[M−α, daA(σ)] = − i
2

pα(σ)

p+
daA(σ) + i∂σ

((∫ σ

−[σ]/2
pα(σ′) dσ′ − Pα

2

)
daA(σ)

)
, (3.26)

– 9 –
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as a consequence of the fact that daA transforms as a density. This yields

[M+−, daA(σ)]φ = 0 , [M−α, daA(σ)]φ = 0 , (3.27)

which assures the consistency of the action of the generators with the chirality constraint.

4 The interacting theory: overlap and insertions

We now wish to introduce interactions in this formalism with the focus being on cubic

interactions. We label the three strings using indices r, s = 1, 2, 3. String 3 is chosen to be

the long one with strings 1 and 2 connecting to it or string 3 splitting into 1 and 2. The

range of σ1, σ2, σ3 is denoted by [σ1], [σ2], [σ3] respectively. We require that

[σ1] + [σ2] = [σ3] , (4.1)

which also follows from the fact that [σ] is proportional to the conserved momentum P+,

so that (4.1) is equivalent to

P+
1 + P+

2 = P+
3 . (4.2)

It is convenient to introduce σ which takes value in the whole interval I = I3. The whole

interval I consists of two “intervals” I1 and I2 respectively for strings 1 and 2. We use the

following scheme

I = I3 = [−[σ3]/2, [σ3]/2] , (4.3)

I1 = [−[σ1]/2, [σ1]/2] , (4.4)

I2 = [[σ1]/2, [σ3]/2] + [−[σ3]/2,−[σ1]/2] . (4.5)

Each σr takes values within [−[σr]/2, [σr]/2] for r = 1, 2, 3. σ and σr (r = 1, 2, 3) are

related by

σ3 = σ , (4.6)

σ1 = σ for σ ∈ I1 , (4.7)

σ2 = σ − [σ3]/2 or σ2 = σ + [σ3]/2 for σ ∈ I2 . (4.8)

Following the work on superstring theory in the spacetime supersymmetric formal-

ism [47–50], we introduce the two building blocks used to construct the cubic interactions:

the overlap and the insertions. The overlap is a delta functional connecting the third string

to the first and second strings. Local insertions of operators at the interaction point are

also necessary. These same ingredients (the overlap and the insertions) can be defined in

the tensionless case as well.

As usual, it is easier to work with discretely labelled variables by introducing mode

expansions. We introduce the Fourier components of xr(σr) by

xr(σr) =
∑
n

xrne
in 2π

[σr ]
σr . (4.9)
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Figure 1. The σ-coordinates of closed strings 1, 2 and 3 are defined on intervals I1, I2 and I = I3.

The crosses indicate the interaction point.

The canonical conjugate of xn, pn, is

prn =

∫
pr(σr)e

in 2π
[σr ]

σrdσr (4.10)

and pr0 is the total transverse momentum Pr (we omit α indices). The Fourier modes for

r = 1, 2 and for r = 3 respectively define two sets of basis vectors. We define a matrix

A relating the basis associated with the third string to that associated with the first and

second strings by

xrn = Arn3mx
3m (r = 1, 2) . (4.11)

We have

Arn3m =
1

[σr]

∫
σ∈Ir

e
−i 2π

[σr ]
nσre

+i 2π
[σ3]

mσ3dσ . (4.12)

The overlap for the bosonic DOF is expressed as

VB =
∏
r=1,2

∏
n

δ(xrn −Arn3mx
3m) . (4.13)

For the fermionic component, we use

VF =
∏
r=1,2

∏
a=1,2

∏
n

δ(θran −Arn3mθ
3am) . (4.14)

Our philosophy in this paper is very similar, in spirit, to that followed in [46]. In

order to build a consistent interacting theory, we start with an ansatz for the dynamical

supersymmetry generators. We allow the entire symmetry algebra to constrain our ansatz

and finally use the fact that the Hamiltonian for the interacting theory can be written as

the “square” of the dynamical supercharge.

In general, the delta function (the overlap) is not sufficient to construct the dynamical

charges in light-cone gauge field theory and one has to “insert” operators such as derivatives

in x and their fermionic counterparts acting on the overlap part. This is the case both for

N = 4 SYM in four dimensions [23, 45] and for superstring field theory [47–50]. In string

theory it is not possible to insert the operators at an arbitrary point in σ. The insertion

should only act at the interaction point.

– 11 –
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The insertion operator we choose is represented by the functions wr(σ) (r = 1, 2),

which have delta function like singularities at the interaction point,

w1(σ1) = δ

(
σ1 −

[σ1]

2

)
= δ

(
σ1 +

[σ1]

2

)
, (4.15)

w2(σ2) = −δ
(
σ2 −

[σ2]

2

)
= −δ

(
σ2 +

[σ2]

2

)
, (4.16)

where we assume that the delta functions satisfy appropriate periodicity conditions. In the

mode number representation, we have

w1n =
1

[σ1]
(−1)n , (4.17)

w2n =
1

[σ2]
(−1)n+1 . (4.18)

The rationale for this choice is described in appendix D.1.

Now that we have an overlap and an insertion, we are in a position to write down an

ansatz for the dynamical supersymmetry generator, describing a cubic interaction between

the tensionless string fields. This is the focus of the next section.

5 Ansatz for cubic interaction terms

In general dynamical charges have an expansion, which in the case of QD, for instance,

takes the form

Q
(0)
D +Q

(1)
D +Q

(2)
D + · · · . (5.1)

Here Q
(0)
D is the free part, quadratic in the string fields, Q

(1)
D is the cubic interaction part,

containing three string fields, and so forth. The form of the ansatz is chosen so as to satisfy

the super-Poincaré algebra (listed in appendix B) order by order in terms of the number

of fields involved. The cubic part of a dynamical charge consists of two terms respectively

involving φφφ and φφφ. Since one of them can be easily recovered from the other by the

hermiticity conditions presented in appendix B, we will hereafter only write the φφφ part.

Our ansatz for Q
(1)
D is

Q
(1)
DȧA = f IJK

∫
φP+

3 I
[x3, θ3]

×
(

(pα · w)(σαbȧdbA · w)(p+)λ0(P+
1 )λ1(P+

2 )λ2(P+
3 )λ3δ(P+

1 + P+
2 − P+

3 )V
)

× φP+
1

J [x1, θ1]φP+
2

K [x2, θ2]

3∏
r=1

dP+
r DθrDxr . (5.2)

Here we assume that f IJK are the structure constants of a Lie algebra. For the case of N

M5-branes in flat spacetime, f IJK should correspond to U(N). λ0, · · · , λ3 are parameters

to be determined. Below we will partially fix them by requiring invariance under rescaling
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of the σ coordinate and using power counting arguments. In (5.2) V = VBVF and

pα · w =

∫
pα(σ)w(σ)dσ = pαrnw

rn , (5.3)

dbA · w =

∫
dbA(σ)w(σ)dσ = dbArnw

rn . (5.4)

The form of the ansatz is fixed basically by requiring that it has the correct index structure.

If one exchanges r = 1 and r = 2 and the dummy indices J,K in the above formula,

the result will have λ1 and λ2 exchanged. Furthermore one has a factor of −1 from each

w (compare (4.15)–(4.18)) and a factor of −1 from f . This implies that we must avoid

choosing λ1 = λ2 to have a non-vanishing ansatz. The ansatz for P−(1) will be determined

below from the supersymmetry algebra.

5.1 Power counting in SFT

We briefly discuss the power counting analysis of the cubic vertex. The first step is to

notice that the appearance of θ and θ̄ is accompanied by factors of p+, so that the integral

measure for the fermionic coordinates is dimensionless.6 The fermionic coordinates only

contribute to the physical dimensions through q’s and d’s and we will omit the dependence

on the θ coordinates of the string field in this subsection.

The dimension of the string fields turns out to be infinite. We thus introduce a regu-

larisation where we discretise the σ variables by M string bits

φP+(xα1 , · · · , xαM ) . (5.5)

The dimension of the string field can be determined by noting that it can be considered as

the wave function of the first-quantised string theory.7 Thus the normalisation factor∫
|φP+(xα1 , · · · , xαM )|2dP+d4x1 · · · d4xM , (5.6)

should be dimensionless implying that the string field φ has dimension

[φ] =
1

2
× (4M − 1) , (5.7)

which depends on the number of bits.

In the bit representation, the overlap delta functional V is

V =

M1∏
n=1

δ (x3n − x1n)

M2∏
n′=1

δ
(
x3(M1+n′) − x2n′

)
. (5.8)

6This is because of the anti-commutation relations in superstring theory in the light-cone gauge,

[θ(σ), θ̄(σ′)] ∼ 1
p+
δ(σ − σ′).

7We note that in general one can redefine the string field by multiplying it by factors of P+. We do

not introduce such a redefinition. This choice is related to shifts of the operators M+− and M−α in (3.23)

and (3.24) and it is reflected in the hermitian ordering between X− and P+ and p− and xα respectively.
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The schematic form (omitting factors irrelevant to the power counting) of the supercharge

Q
(1)
D , after carrying out the Dx1Dx2 integrals using the delta functions, is

Q
(1)
D ∼

∫ M3∏
n=1

d4x3ndP
+
1 dP

+
2 dP

+
3 φ3φ1φ2

× p · wq · wδ(P+
1 + P+

2 − P+
3 )
(
p+
)λ0 (P+

1

)λ1 (P+
2

)λ2 (P+
3

)λ3 . (5.9)

We note that we are not introducing any dimensionful coupling constant here; this is a

requirement we impose on the SFT in order to construct a scale invariant theory.

Requiring that both sides of (5.9) have dimension 1
2 , we find

λ0 + λ1 + λ2 + λ3 = −3

2
. (5.10)

An essential feature in the power-counting analysis of SFT presented above is that the

M -dependent term in the dimension arising from the string fields

[φ1] + [φ2] + [φ3] =
1

2
× (4M1 − 1) +

1

2
× (4M2 − 1) +

1

2
× (4M3 − 1) , (5.11)

is exactly cancelled by the dimension of the measure[
M3∏
n=1

d4x3n

]
= −4M3 , (5.12)

because of the conservation of the number of bits

M1 +M2 = M3 , (5.13)

for the cubic vertex.

We observe that this cancellation implies that the dimensional analysis is independent

of the number of transverse directions, as can be seen from (5.11) and (5.12). This is

in sharp contrast with the dimensional counting in traditional field theories. The power

counting in SFT is favourable compared to that in usual QFT in this sense.

In the SFT case under consideration the free part of the action contains a term which

schematically can be written as∫
φP+(x1, . . . , xM )

M∑
n=1

(
∂

∂xαn

)2

φP+(x1, . . . , xM )dP+d4x1 · · · d4xM . (5.14)

Comparing this formula in the case M = M3 to the cubic vertex (5.9) we see that the

terms quadratic and cubic in the fields essentially have the same structure; the difference

only lies in how we group the string bits into different string fields. This is the origin of

why the power counting analysis does not depend on the spacetime dimension. This in

turn reflects the basic feature of string theory that locally string interaction and string

propagation cannot be distinguished.

This result may have been expected as it is well known that the coupling constant in

string theory is dimensionless irrespective of the spacetime dimension. The property of
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possessing a dimensionless coupling constant potentially makes tensionless string theory a

natural framework for constructing theories with conformal symmetry.

The parameter λ0 is fixed considering a rescaling of the σ coordinate under which [σ]

becomes α[σ]. Under this transformation pα turns into pα/α, i.e. it transforms as a density.

p+, dbA(σ), and w(σ) are also densities. Taking into account the two σ integrals involved

in the definition of p · w and q · w, we see that

λ0 = −2 . (5.15)

Combining this with (5.10), we have

λ1 + λ2 + λ3 =
1

2
. (5.16)

5.2 Computation of commutators

We explicitly work out the commutators to show that the ansatz is consistent with the

superalgebra.

An issue in the computation is the potential singularity which can occur because of the

multiplication of operators at the same point in σ-space. To perform the computations in

a well defined manner we use a regularisation scheme, analogous to that introduced in [53],

in which operators are smeared. For most of the commutators a computation done using

smeared operators, in the limit ε→ 0 (where ε is the length scale associated with smearing),

produces a result which is identical to that of a formal computation without regularisation.

For the computation of the commutator [QD, P
−], however, smearing makes a difference.

Also, it is necessary to evaluate the result of the computation, which includes delta func-

tionals, by means of test functionals. In this section, we avoid the explicit introduction of

smearing. Details regarding smearing and test functionals are discussed in appendix E.

We begin with the commutation relation,

[QKaA, QDḃB] = (σα)aḃCABPα . (5.17)

When expanded, this implies [
Q

(0)
K , Q

(1)
D

]
= 0 , (5.18)

since the kinematical generators QK and P have no non-linear parts.

To compute the commutator
[
Q

(0)
K , Q

(1)
D

]
, we note that in general, the commutator

between a symmetry generator O and the string field (at the linearised level) is given by[
O(0), φP+

]
= −O · φP+ . (5.19)

Here O(0) appearing on the l.h.s. denotes the linear part (quadratic in terms of the fields)

of the charge in the second-quantised formulation. On the r.h.s. O· denotes how these

operators act on the field (as a ket-vector) from the left in the first-quantisation formulation.

The commutator between the charges and φ̄ can be computed by taking the complex
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conjugate of (5.19). Apart from the case of a few exceptional operators,8 one can show

that [
O(0), φP+

]
= φP+ · O , (5.20)

where ·O denotes the action of the operator from the right on the complex conjugate of

the field (as a bra-vector). For instance, in the present case, we have[
Q

(0)
KaA, φP+

]
= −QKaA · φP+ = −

∫
qaA(σ)dσ φP+ , (5.21)[

Q
(0)
KaA, φP+

]
= φP+ ·QKaA = −

∫
daA(σ)dσ φP+ . (5.22)

Since the operator Q
(0)
K acts on the string fields,

[
Q

(0)
KaA, Q

(1)

DḃB

]
= f IJK

∫ (
φP+

3 I
·QKaA

)
(· · ·V )φP+

1

JφP+
2

K
3∏
r=1

dP+
r DθrDxr

+ f IJK

∫
φP+

3 I
(· · ·V )QKaA ·

(
φP+

1

JφP+
2

K
) 3∏
r=1

dP+
r DθrDxr , (5.23)

where

(· · ·V ) = (pα · w)(σαbȧdbA · w)(p+)λ0(P+
1 )λ1(P+

2 )λ2(P+
3 )λ3δ(P+

1 + P+
2 − P+

3 )V . (5.24)

Using the associativity property we rewrite (5.23) as

f IJK

∫
φP+

3 I

(
Q3
KaA · (· · ·V ) + (· · ·V ) ·

(
Q1
KaA +Q2

KaA

))
φP+

1

JφP+
2

K
3∏
r=1

dP+
r DθrDxr ,

(5.25)

where QrK with r = 1, 2, 3 denotes the operator QK acting on the r-th string field. Moving

Q1,2
K to the left of (· · ·V ), (5.25) becomes

f IJK

∫
φP+

3 I

(∫
I3

qaA(σ)dσ +

∫
I1

daA(σ)dσ +

∫
I2

daA(σ)dσ

)
(· · ·V ) φP+

1

JφP+
2

K

×
3∏
r=1

dP+
r DθrDxr . (5.26)

From this we can show(∫
I3

qaA(σ)dσ +

∫
I1

daA(σ)dσ +

∫
I2

daA(σ)dσ

)
(· · ·V )

=
∑
r=1,2

∫
Ir

[daA(σ), (· · · )] dσV − (· · · )
(∫

I3

qaA(σ)dσ +

∫
I1

daA(σ)dσ +

∫
I2

daA(σ)dσ

)
V

= 0 . (5.27)

8Exceptional ones are M+− and M−α. For these, the ordering of θ and δ
δθ

has to be worked out carefully.
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For the second term in the second line of (5.27), we used

(
θra(σ)− θ3a(σ)

)
VF = 0 ,

(
δ

δθra(σ)
+

δ

δθ3a(σ)

)
VF = 0 , (5.28)

where σ ∈ Ir with r = 1, 2, and, for the first term,∫
I1

w(σ)dσ +

∫
I2

w(σ)dσ = 0 . (5.29)

This important property of w is also used for the commutators [M+α, QD] and [M+α, P−D ],

which can be verified using similar manipulations.

The commutator [QD,M
αβ ] can also be verified directly. This is expected since (3.22)

has the correct index structure ensuring the correct transformation of Q
(1)
D under the SO(4)

little group.

The commutation relation[
QDȧA, QDḃB

]
=
√

2εȧḃCABP
− , (5.30)

yields [
Q

(0)
DȧA, Q

(1)

DḃB

]
+
[
Q

(1)
DȧA, Q

(0)

DḃB

]
=
√

2εȧḃCABP
−(1) . (5.31)

Evaluating the l.h.s. , one obtains

P−(1) = 2
√

2 f IJK

∫
φP+

3 I

(
(pα · w)2(p+)λ0(P+

1 )λ1(P+
2 )λ2(P+

3 )λ3δ(P+
1 + P+

2 − P+
3 )V

)
× φP+

1

JφP+
2

K
3∏
r=1

dP+
r DθrDxr , (5.32)

where we used

(pαr (σ) + pα3 (σ))VB = 0 , (5.33)

for σ ∈ Ir with r = 1, 2.

Commutators involving M+− can also be verified and lead to the same condition (5.16)

obtained from the power counting analysis. We note that taking the commutator of the

boost generator M+− with another operator essentially amounts to counting the number

of P+’s contained in the operator. One also has to take into account the “intrinsic weight”,

−1
2 , of the string field under boosts which can be read off from (3.23).

The commutator [QD, P
−] = 0 requires a careful analysis using smearing and test

functionals, because p2 terms in P−(0) acting on the overlap part, combined with p·w in Q(1)

may result in unwanted non-zero contributions. An outline of this calculation is presented

in appendix E.4. The result justifies our choice of the insertion w explained in appendix D.1.

The commutators involving the Lorentz generator M−α are more subtle and we have

not completed their analysis. We expect that the computation of the commutator between

M−α and P− will fix the λ parameters, since the analogous parameters of the tensile

superstring field theory were fixed in this way in [51].
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6 Conclusions and discussion

In this paper we have used light-cone string field theory to formulate an interacting theory of

tensionless strings in six dimensions, with the purpose of obtaining a Lagrangian description

of the (2, 0) superconformal field theory. Our proposal is motivated by the M-theory picture

in which the (2, 0) CFT arises from the low-energy dynamics of coincident M5-branes.

In this M-theory construction, M2-branes stretched between coincident M5-branes yield

degrees of freedom consisting of (matrix valued) tensionless closed strings confined to the

world-volume of the M5-branes. We have argued that string field theory, in its light-cone

form, is the most suitable language to study these interacting tensionless strings.

The most appealing feature of a formulation of the (2, 0) CFT as a tensionless string

field theory is the fact that it may allow us to avoid the obstacles, associated with power

counting arguments, which impede the construction of local renormalisable interacting

QFT’s in dimension larger than four. The use of stringy degrees of freedom has also

interesting implications in connection with the relation between the (2, 0) CFT in d = 6

and the four-dimensional N = 4 SYM theory. The latter is obtained upon dimensional

reduction on a torus and we have suggested that wrapped string configurations may play

a central role in the emergence of the four-dimensional Yang-Mills coupling constant.

In this paper we introduced our formalism and we presented the free part of the SFT

action, together with an ansatz for the cubic interaction part. These are only the first steps

towards obtaining a viable formulation of the six-dimensional (2, 0) CFT. There remain

multiple issues to be clarified, both of a technical nature — in the construction of the

tensionless SFT — and of a more conceptual nature — in relation to its interpretation as

a description of the (2, 0) CFT.

In order to complete the construction of the interacting SFT to cubic order, it is

important to finish the analysis of the ansatz for the M−α Lorentz generators and their

commutators with the other charges. We expect that this should allow us to completely

fix our ansatz, determining the λ parameters. By a more comprehensive study of the

constraints imposed by the full superconformal algebra, one can presumably deduce the

full anti-symmetry and the Jacobi identity for the parameters f IJK , thus characterising

them as structure constants of a Lie algebra, as was done for N = 4 SYM in [46].

Our study of the free part of the superalgebra has only been carried out at the level

of the Poisson brackets, without taking care of ordering issues in the definition of operator

products. It is clearly desirable to repeat these calculations at the quantum level. For

this purpose it may be necessary to make a more systematic use of smearing and test

functionals, following the approach discussed in appendix E.

The most important issues that remain to be addressed are, however, more conceptual

and concern the interpretation of our six-dimensional tensionless SFT as describing the

dynamics of the (2, 0) CFT. The fundamental physical properties of a CFT formulated in

this manner need to be investigated. As a theory of tensionless strings our model contains

a very large number of light degrees of freedom, whose properties and behaviour need to

be understood. The most crucial aspects to focus on are the identification of the correct

observables in the theory and how to describe them in the SFT language. Clarifying these

aspects is essential in order to understand the very nature of the resulting CFT.
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On general grounds, one expects the proper observables to be correlation functions of

local operators organised in superconformal multiplets. Within the formulation proposed

in this paper such local operators should be built from the string field. It is possible that

there be a vast redundancy in our formulation, so that, in spite of the seemingly very large

number of degrees of freedom contained in the string field, the set of physical observables

built from them is similar to those found in more familiar conformal theories in lower

dimensions. It is also possible, however, that the construction that we presented give rise

to a much broader set of observables compared to more conventional CFT’s and that the

system described by our tensionless string field is fundamentally different from the known

examples of conformal theories.

There are several ways to gain insights into the properties of observables in the the-

ory we constructed. It can be very useful to consider special sectors in which one has

independent means of guessing the structure of the relevant observables. Particularly in-

teresting in this respect are large R-charge states in M-theory in AdS7 × S4. According

to the AdS/CFT correspondence, the (2, 0) CFT has a dual description in terms of M-

theory in AdS7×S4, which possesses a large R-charge sector analogous to that considered

in [19], described by the BMN matrix model. The spectrum of the BMN matrix model

includes states associated with near-BPS fluctuations of spherical membranes. Then the

AdS/CFT duality implies that there exist a large R-charge sector in the six-dimensional

(2, 0) CFT containing operators corresponding to fluctuations of spherical membranes. Re-

calling the properties of the analogous sector in the duality between type IIB string theory

in AdS5 × S5 and N = 4 SYM, we can speculate about the characteristics of a set of

large R-charge degrees of freedom in the (2, 0) CFT. In the AdS5/CFT4 case one consid-

ers so-called BMN operators [22], which are constructed as traces of products of a large

number of the matrix-valued elementary fields of the N = 4 SYM theory. The position

in the sequence of fields inside such traces can be understood as being associated with

the σ coordinate in the dual string. In the case of the (2, 0) theory the states with large

R-charge we are interested in are membrane fluctuations and thus one has two σ coordi-

nates to identify in the relevant CFT operators. Since the (2, 0) theory contains tensionless

string degrees of freedom, it is natural to build the analog of the BMN operators as traces

of products of matrix fields defined on a loop space, which is the configuration space of

tensionless strings. In this way one may introduce two σ-coordinates: one associated with

a given “point” in the loop space, the other labelling the order of the matrix fields in the

product. Our string field precisely provides a matrix valued field on a loop space. Thus the

consideration of a BMN-like sector suggests that operators written as traces of products of

string fields may be a natural choice of observables in the (2, 0) CFT. Although in general

it is not straightforward to define a theory built on a loop space, SFT provides a rather

successful example of such a theory. This is actually one of the motivations that led us to

study the SFT approach proposed in this paper.

When considering the problem of identifying the observables of the (2, 0) theory, it

is clearly important to take into account as much as possible the constraints from sym-

metry arguments and consistency requirements. The bootstrap program [18] is a way of

systematically implement these constraints to obtain, in particular, bounds on the spec-
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trum. Provided that the observables in our formulation are not of a qualitatively different

nature from those of more standard CFT’s, any constraints established using the bootstrap

method should be satisfied in our case as well.

Further guidance in characterising the observables in our formulation of the (2, 0) CFT

can be provided by the study of the compactification of the theory to lower dimensions, in

particular to N = 4 SYM in d = 4. Understanding how to derive the N = 4 SYM theory

in this way is in its own right an important issue, that is essential to address in order to

establish the validity of our formulation. Wrapped string configurations are expected to give

rise to the SYM degrees of freedom in d = 4. However, the fate of unwrapped strings upon

compactification remains to be clarified. Unless there is a mechanism for the decoupling

of these configurations, it would appear that our formulation of the (2, 0) CFT may give

rise to tensionless strings in four dimensions. There is also a related issue associated with

the presence of an infinite number of flat directions (one for each mode of the tensionless

string) in the action, which may produce severe IR divergences. There seem to be two

possible scenarios in connection to the compactification of our tensionless SFT to d = 4 —

either there is a mechanism explaining the decoupling of the extra light degrees of freedom

or there exists a new description of N = 4 SYM in four dimensions containing tensionless

strings. It would be interesting to study the possible connections of such a formulation

to the loop equation [74–76], i.e. the Schwinger-Dyson equation for Wilson loop operators,

in N = 4 SYM. Because of scale invariance, the string arising from the Wilson loop may

be expected to be tensionless. For our purpose it is natural to consider the loop equation

defined in light-cone superspace [45]. Various types of loop equations for N = 4 SYM,

mainly in the context of the AdS/CFT correspondence, were considered in [77–83].

Another important issue to understand is whether or not a critical dimension exists

for tensionless strings. The analysis of the critical dimension is expected to be different

compared to the case of ordinary tensile strings.9 This is because the nature of the UV

divergences in σ-space and the normal ordering, which underlie the calculation of the critical

dimension, are different in the tensionless case. Moreover, in the case we are interested in

the coupling constant should be of order 1 and thus the free and the interaction parts may

mix when discussing possible anomalies in the Lorentz symmetry.

The possible mixing between contributions of different orders has another important

implication. It may allow us to determine the magnitude of the coupling constant by

requiring the cancellation of the quantum anomaly in the symmetry algebra. In the case of

the bosonic open-closed light-cone gauge string field theory, it is known that the Lorentz

anomaly of the string field theory (not that of the first quantised theory) determines the

relationship between the various coupling constants in the theory [62–64]. The situation

in the case of the (2, 0) CFT may be analogous to that of the Chern-Simons theory, in

which the coupling constant is constrained to be an integer by the requirement that the

path integral be uniquely defined. Another way to fix the coupling constant is to work out

the reduction discussed above to four-dimensional N = 4 SYM.

9The Lorentz anomaly in the first-quantised formulation of light-cone gauge tensile string theory in six

dimensions was computed in [84]. In [27, 29] it was argued that there is no critical dimension for tensionless

bosonic string theory, i.e. the theory is consistent for any number of spacetime dimensions.
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Our formulation of the (2,0) theory as a tensionless string theory for the low-energy

dynamics of M5-branes is analogous to the description of the low-energy dynamics of par-

allel D-branes in terms of SYM theories. In view of this, we expect to have the analog of

the well-known realisation of the Higgs mechanism in a system of D-branes. Each matrix

element of our matrix-valued string field contains the tensor multiplet arising from the zero

mode part of x(σ) and θ(σ). The 5 scalar fields in the tensor multiplet describe transverse

fluctuations of the M5-branes and a vacuum expectation value for the scalars in the i-th

diagonal element in the matrix-valued string field corresponds to the position of the i-th

M5-brane. It is interesting to study the theory around configurations in which these scalar

fields have non-zero vacuum expectation values. The theory should then describe the low

energy limit of parallel, but non-coincident, M5-branes. There are two scales involved in

this construction, the M2-brane tension (or equivalently the 11-dimensional Planck length)

and the separation between the M5-branes (or equivalently the scalar vacuum expectation

value). The tension of the strings arising from M2-branes stretched between M5-branes is

the product of the membrane tension and the distance between the M5-branes. One should

consider the low energy limit by simultaneously sending to zero the separation between any

two M5-branes, in such a way as to keep the tension of the strings finite when measured in

terms of the relevant energy scale. Equivalently, one sends the eleven-dimensional Planck

energy to infinity, while tuning the distances between M5-branes, so that the string tension

remains finite. Let us consider, for definiteness, the case in which N M5-branes are divided

into two groups of N1 and N2 coincident branes, with N = N1 +N2. The configuration is

then represented by a block diagonal matrix. In the original N×N matrix one can identify

N1×N1 and N2×N2 diagonal blocks and two off-diagonal blocks of size N1×N2 and N2×N1

respectively. The scaling limit should decouple both the bulk gravity dynamics and the de-

grees of freedom associated with fluctuations of the M2-branes in the directions transverse

to the M5-branes. In this limit the DOF contained in the block diagonal elements should

be tensionless strings and those contained in the block off-diagonal elements should be ten-

sile strings with a tension proportional to the vacuum expectation value (or equivalently

the distance between the two sets of M5-branes). This coupled system of tensionless and

tensile strings should arise by expanding our SFT around the configuration with non-zero

vacuum expectation values. In this situation the cubic and higher order vertices in the

Hamiltonian give rise to additional contributions to the part quadratic in the string fields.

Checking that these quadratic terms produce the correct free Hamiltonian for the block

off-diagonal tensile strings provides a non-trivial test of the form of the interaction vertices.

One may also study M5-branes in a spacetime with a compactified transverse direc-

tion, that can be realised considering an infinite number of copies of M5-branes, in a way

analogous to the description of D-branes in a compactified spacetime by SYM [85]. In this

way one may obtain a SFT formulation of the theory describing the decoupling limit of

NS5-branes, i.e. the little string theory with (2,0) supersymmetry [86]. For a review of

little string theory, see [87]. The SFT description would contain tensionless strings as well

as an infinite variety of tensile strings with tensions proportional to an integer multiple of

the compactification radius.

In this paper we constructed the cubic vertex for a tensionless string field theory in six

dimensions. It is important to study the possible higher order terms in the Hamiltonian.
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In the case of tensile bosonic string field theory in light-cone gauge, it is known that cubic

and quartic vertices are sufficient to reproduce the correct S-matrix [54, 55]. For the light-

cone superstring field theory constructed in [47–50] the necessity of quartic couplings was

discussed in [88–91], but there seems to be no definitive answer to the question of whether

higher order vertices are present in the theory. It is still premature to draw any conclusions

about the structure of higher-order terms in our model, although the similarity and close

relationship to N = 4 SYM may suggest that the action should stop at quartic order.

The SFT description we proposed in this paper applies to a special sector of M-theory,

i.e. the low energy fluctuations of coincident M5-branes. The tensionless string DOF we

studied arise from membranes stretched between coincident M5-branes. The matrix model

of M-theory [92, 93], which is a good candidate for the formulation of the full M-theory, can

be considered as the matrix-regularised version of membrane theory [92, 94, 95]. Within

this framework it is possible that our SFT construction may eventually be superseded by

a description in terms of regularised DOF.

Although additional work is required to establish whether our tensionless string field

theory approach will lead to a valid formulation of the six-dimensional (2, 0) CFT, we

believe that the ideas presented in this paper deserve to be further studied. If successful,

this proposal would extend the realms of both string theory and QFT. We hope that our

work provides the first steps and the necessary tools to pursue this line of investigation.
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A Tensors with R-symmetry and spinor indices

Six-dimensional N = (2, 0) supersymmetry is described, for example, in [67, 68].
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A.1 R-symmetry USp(4)

For the R-symmetry USp(4) tensors we use an anti-symmetric and non-degenerate 4 × 4

matrix C,

CAB = −CBA . (A.1)

It is related to the B matrix used in the complex conjugation by

C = BTA , (A.2)

i.e.

CAB = BC̄
AAC̄B , (A.3)

where one can choose a representation in which A equals the Kronecker delta. The B

matrix satisfies

B∗B = −1 , (A.4)

i.e.

BĀ
BBB̄

C = −δĀC̄ . (A.5)

A.2 Light-cone little group SO(4)

We define SU(2) anti-symmetric ε tensors with the convention

ε12 = 1 , (A.6)

ε12 = 1 . (A.7)

We introduce the σ-matrices

(σα)ȧb = −(σα)bȧ , (σα)ȧb = −(σα)bȧ , (A.8)

related to each other by

σαaḃ = +εacεḃḋσα
cḋ
, (A.9)

σα
cḋ

= σαaḃεacεḃḋ . (A.10)

They satisfy the algebra

σαaċσβċb + σβaċσαċb = δab , (A.11)

σαȧcσβcḃ + σβȧcσαcḃ = δȧḃ . (A.12)

An explicit representation is

σαaḃ = (−σ1, σ2,−σ3, i1) , (A.13)

σαȧb = (σ1, σ2, σ3,−i1) . (A.14)

We define

σαβab =
1

2

(
σαaċσβċb − σβaċσαċb

)
, (A.15)

σαβȧḃ =
1

2

(
σαȧcσβcḃ − σβȧcσαcḃ

)
(A.16)
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and

σαβab = σαβacε
cb , (A.17)

which satisfy

σαβ cd = σαβ dc . (A.18)

We introduce 2× 2 matrices B
¯̇a
ċ, B

ā
c, whose components are equal to those of −iσ2. We

have

B−1 c
āσαaḃB

−1 ḋ
¯̇
b

= +σαcḋ , (A.19)

B
¯̇a
ċσαȧbB

b̄
d = +σαċd , (A.20)

B−1 c
āσαβ abB

b̄
d = +σαβ cd , (A.21)

εcdB−1 e
d̄ = +B c̄

dε
de , (A.22)

B−1 d
b̄B
−1 c

āσαβ ab = σαβ cd . (A.23)

B Superalgebra

[(QK)aA, (QK)bB] = −
√

2εabCABP
+ , (B.1)

[(QK)aA, (QD)ḃB] = (σα)aḃCABPα , (B.2)

[(QD)ȧA, (QK)bB] = −(σα)bȧCABPα , (B.3)

[(QD)ȧA, (QD)ḃB] =
√

2εȧḃCABP
− , (B.4)

[M+α, (QD)ȧA] = − i√
2

(QK)bAε
bc(σα)cȧ , (B.5)

[M−α, (QK)aA] =
i√
2

(QD)ḃAε
ḃċ(σα)ċa , (B.6)

[Mαβ , (QK)aA] = − i
2

(QK)bA(σαβ)ba , (B.7)

[Mαβ , (QD)ȧA] = − i
2

(QD)ḃA(σαβ)ḃȧ , (B.8)

[M+−, (QK)aA] =
i

2
(QK)aA , (B.9)

[M+−, (QD)ȧA] = − i
2

(QD)ȧA , (B.10)

[M+−,M+α] = iM+α , (B.11)

[M+−,M−α] = −iM−α , (B.12)

[M+α,M−β ] = −iMαβ + iδαβM+− , (B.13)

[Mαβ ,M±γ ] = i(ηαγM±β − ηβγM±α) , (B.14)

[Mαβ ,Mγδ] = i(ηβγM δα − ηαγM δβ − ηβδMγα + ηαδMγβ) , (B.15)

[M+−, P+] = iP+ , (B.16)

[M+−, P−] = −iP− , (B.17)

[M+α, P−] = −iPα , (B.18)

[M+α, P β ] = −iP+δαβ , (B.19)
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[M−α, P+] = −iPα , (B.20)

[M−α, P β ] = −iP−δαβ , (B.21)

[Mαβ , P γ ] = i(P βδγα − Pαδγβ) . (B.22)

All other commutators not listed here vanish.

Our convention is that all bosonic charges M ’s and P ’s are hermitian, while QK and

QD satisfy the hermiticity conditions

QKaA = −QKbB B−1b
āB
−1B

Ā , (B.23)

QDȧA = QDḃB B−1ḃ
¯̇aB
−1B

A . (B.24)

C Computation of [M−α,M−β]

We verified explicitly the commutators between the charges for the free part of the theory

presented in section 3. We work at the level of Poisson brackets, i.e. we ignore ordering

issues in the definition of products of operators.

In this appendix we show how to compute the commutators of the free part of the

symmetry charges focussing on the most involved commutator

[M−α,M−β ] = 0 , (C.1)

as an example.

For the free part, we can work solely in the first quantised language,

M−α =

∫ [σ]

0

(
x−(σ)pα(σ)− xα(σ)p−(σ) (C.2)

+
i

2
θaA(σ)

δ

δθaA
(σ)

pα(σ)

p+
+

√
2

8
i
pγ(σ)

(p+)2
qaA(σ)qbB(σ)σαγabC−1AB

)
dσ .

For simplicity we choose the range of σ to be [0, [σ]]; the computation goes through also in

the convention used in the main text.

The essential simplification which occurs for the tensionless string theory is that a good

part of the computation is completely parallel to the computation for the superparticle case.

This is because each charge presented in section 3 is an integral of the charge density which

does not involve σ-derivatives. Dropping the σ dependence from the charge density, we get

the charge for the superparticle case. Thus for example M−α for the superparticle is

M−α = x−pα − xαp− +
i

2
θaA

∂

∂θaA
pα

p+
+

√
2

8
i
pγ

(p+)2
qaAqbBσ

αγabC−1AB . (C.3)

The definition of q is the same as (3.8) except that there is no σ-dependence for the su-

perparticle case. By a slight abuse of notation, we use for the variables characterising the
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superparticle, x+, p−, xα, pα, θ
aA, the same symbols used in the string case. The commu-

tation relations between these variables are

[x+, p−] = −i , (C.4)

[xα, pβ ] = iδαβ , (C.5)[
∂

∂θaA
, θbB

]
= δabδ

A
B . (C.6)

Comparing these to the commutation relations in the tensionless superstring theory

[X+, P−] = −i , (C.7)

[xα(σ), pβ(σ′)] = iδαβδ(σ − σ′) , (C.8)[
δ

δθaA
(σ), θbB(σ′)

]
= δabδ

A
Bδ(σ − σ′) , (C.9)

we see that if x−(σ) is not involved, the computation of commutators for the tensionless

string case is completely parallel to the superparticle case; the commutators between the

charge densities of the tensionless string are given simply by the commutators between the

charges of the particle multiplied by δ(σ − σ′).
The only charge10 which contains x−(σ) is M−α. Hence one needs to perform ad-

ditional computations to verify the commutation relations involving this generator. In

section C.1 we present the computation of the commutator [M−α,M−β ] in the superpar-

ticle case and in C.2 we explain the modifications necessary to deal with the tensionless

superstring case.

C.1 Superparticle case

We write the generator as

M−α = Xα + Y α , (C.10)

where

Xα = x−pα − xαp− +
i

2
θaA

∂

∂θaA
pα

p+
, Y α =

√
2

8
i
pγ

(p+)2
qaAqbBσ

αγabC−1AB . (C.11)

It is easy to show

[Xα, Xβ ] = 0 , (C.12)

[Xα, Y β ] = −
√

2

8

pγpα

(p+)3
qaAqbBσ

βγabC−1AB −
√

2

8

p−

(p+)2
qaAqbBσ

αβabC−1AB . (C.13)

We also get

[Y α, Y β ] =

(√
2

8
i

)2

× 2× pγ

(p+)2

pδ

(p+)2
× σαγabC−1LMσβδcdC−1NP × qaL[qbM , qcN ]qdP

=
1

16

pγpδ

(p+)4
× σαγabC−1LMσβδcdC−1NP × qaLqdP ×

√
2εbcCMNp

+

= −
√

2

8

1

(p+)3
× qaLqdP × C−1LP ×

(
σαγadpγp

β − pγpγσαβad
)
, (C.14)

10M+− depends only on the zero-mode X−.
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where the underlined indices are understood to be anti-symmetrised with no multiplicative

coefficient. Adding up these contributions, we obtain [M−α,M−β ] = 0 for the superparticle

case.

In the computation we use the following formulae and the general formulae listed in

appendix A

σαγabεbcσ
βδcd = −σαγabσβδbcεcd , (C.15)

σαγσβδ = σαγβδ + σαδδγβ − σγδδαβ − σαβδγδ + σγβδαδ + δαδδγβ − δαβδγδ , (C.16)

σαγσβδ = 2σαγβδ + σαδδγβ − 2σαβδγδ + σγβδαδ − σβδδγα − σγαδβδ + δαδδγβ

− δβδδγα , (C.17)

σαγσβδpγpδ = 2σαγpγp
β − 2σαβpγp

γ − 2σβγpγp
α . (C.18)

In the last three equations the spinor indices are suppressed.

C.2 Contribution involving x−(σ) in [M−α,M−β]

As already explained, most of the terms appearing in the computation of [M−α,M−β ] for

the tensionless superstring case can be simply obtained from the corresponding terms in

the computation for the superparticle.

The exceptions are the terms involving x−, since x− is defined non-locally in terms of

other dynamical variables (3.16). More practically, the calculations in the string and in

the particle cases differ because p+ is a c-number in the string case and we do not have

the analogue of the commutator

[x−(σ), p+(σ′)] = −iδ(σ − σ′) . (C.19)

The term involving x− in the [M−α,M−β ] commutator is

[A−α,M−β ] , with A−α =

∫ [σ]

0
x−(σ′)pα(σ′) dσ′ . (C.20)

This commutator can be computed by rewriting the generator A−α following Mandel-

stam [53],

A−α = X−Pα +

∫ [σ]

0
x−(σ′)

(
pα(σ′)− Pα

[σ]

)
dσ′

= X−Pα +

∫ [σ]

0
x−(σ′) ∂σ′

∫ σ′

0

(
pα(σ′′)− Pα

[σ]

)
dσ′′dσ′

= X−Pα −
∫ [σ]

0
∂σ′x

−(σ′)

(∫ σ′

0
pα(σ′′) dσ′′ − Pα

[σ]
σ′

)
dσ′ , (C.21)

where ∂σx
− is given by (3.16).

The computation of [A−α,M−β ] can be done systematically by noting the following

observation about the commutator [A−α, f ] for a generic dynamical variable f . We denote

by [A−α, f ]cov the commutator based on the covariant commutation relation, i.e. the com-

mutation relations (C.19), (C.8) and (C.9). The computation of [A−α, f ]cov can be done in
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a way which is completely parallel to the superparticle case. Thus the difference between

[A−α, f ] and [A−α, f ]cov is of interest.

It is known that this difference can be understood as the effect of the compensating

gauge transformation on f [69]. The generator A−α (using the covariant commutation

relation) transforms p+. This breaks the light-cone gauge condition and one needs a com-

pensating gauge transformation to go back to the light-cone gauge slice. The variation of

p+ computed using the covariant commutation relation is proportional to

[A−α, p+]cov = −ipα(σ) . (C.22)

Since p+ transforms as a density under σ-reparametrisations, we have

δp+(σ) = −∂σ(p+δσ(σ)) = −p+∂σδσ(σ) . (C.23)

Comparing (C.22) with (C.23) we find that δσ associated with the compensating gauge

transformation is proportional to

uα(σ) =
1

p+

∫ σ

0
pα(σ′) dσ′ , (C.24)

where the integration constant is fixed by δσ(0) = 0. We have

[A−α, f(σ)] = [A−α, f(σ)]cov + i∂σf(σ)uα(σ) if f is a scalar , (C.25)

[A−α, f(σ)] = [A−α, f(σ)]cov + i∂σ(f(σ)uα(σ)) if f is a density . (C.26)

The second terms on the r.h.s. correspond to the compensating gauge transformations.

Indeed, for f = p+ the r.h.s. of (C.26) vanishes.11

Later, we will need to evaluate
[
A−α,

∫ [σ]
0 f(σ) dσ

]
. We have[

A−α,

∫ [σ]

0
f(σ) dσ

]
= −iP

α

p+
f([σ]) +

∫ [σ]

0
[A−α, f(σ)] dσ . (C.27)

To obtain the first term, we regularise the integral in terms of a Riemann sum,∫ [σ]

0
f(σ) dσ ∼=

M∑
m=1

f

(
[σ]

M
m

)
[σ]

M
, (C.28)

and use

[X−, [σ]] =

[
X−,

P+

p+

]
= − i

p+
. (C.29)

In particular, if f is a density, we obtain[
A−α,

∫ [σ]

0
f(σ) dσ

]
=

∫ [σ]

0
[A−α, f(σ)]cov dσ . (C.30)

11There are two conventions for the light-cone gauge in string theory. The convention we are using in

which p+ is a constant is suitable when discussing interactions of strings [52]. There is another convention,

used in [69], in which [σ] is a constant (such as 2π). The form of the compensating gauge transformation

depends on this convention. In the convention of [69], we need another contribution to the r.h.s. of (C.24)

which is linear in σ.
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using (C.26).

We compute [A−α,M−β ] by successively verifying the generic formulae (C.25)

and (C.26) for various building blocks of M−β . For instance, we verify (C.25) for f = x−,

and (C.26) for f = pβ , and then (C.26) for f = x−pβ . Finally by using (C.30) we obtain

[A−α,M−β ] = [A−α,M−β ]cov . (C.31)

This, combined with the computation for the superparticle in appendix C.1, implies

[M−α,M−β ] = 0.

The following formulae are used in the computation. x−(σ) can be written as [69]

x−(σ) = X− +

∫ [σ]

0

(
σ′

[σ]
− θ(σ′ − σ)

)
1

p+

(
pβ(σ′)∂σx

β(σ′)− i∂σθaA(σ′)
δ

δθaA
(σ′)

)
dσ′ ,

(C.32)

which can be confirmed by differentiating with respect to σ and using (3.16). When

computing [A−α, x−(σ)] the integral over σ in (C.32) should be dealt with in a manner

similar to the manipulations used above for the computation of (C.27). Another important

formula is

[X−, xβ(σ)] =

[
X−,

∑
n

xβne
in 2π

[σ]
σ

]
= i∂σx

β(σ)
σ

P+
. (C.33)

We also use

[X−, pβ(σ)] = i∂σ

(
pβ(σ)

σ

P+

)
, (C.34)

[X−, θaA(σ)] = i∂σθ
aA(σ)

σ

P+
, (C.35)[

X−,
δ

δθaA
(σ)

]
= i∂σ

(
δ

δθaA
(σ)

σ

P+

)
. (C.36)

D Overlap and insertion

D.1 Insertion operator

In this appendix we motivate the use of w(σ) defined in the main text (4.15)–(4.18) as the

insertion and we discuss an alternative possibility.

One should insert operators at the interaction point, since there is no other special point

on the string world-sheet. It is necessary here to distinguish the immediate left/right of the

interaction point, since the very concept of interaction point may be considered as defined

by the change of left/right from the point of view of the r = 1, 2 strings and the r = 3 string.

One could in general consider any linear combination

a1e1 + a2e2 + a3e3 + a4e4 , (D.1)

of the four delta function approximations e1, . . . , e4 depicted schematically in figure 2.

As explained in section 5.2 below (5.29) it is desirable to have

a1 + a2 + a3 + a4 = 0 , (D.2)
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Figure 2. The smeared delta functions localised near the interaction point (indicated by the

crosses) ei with i = 1, · · · , 4.

in order to eliminate some unwanted contributions in the computation of commutators.

Furthermore it can be shown, using the method of the test functional discussed in

appendix E, that

e1 − e2 + e3 − e4 , (D.3)

gives vanishing contribution as an insertion operator. Intuitively, this combination vanishes,

because it vanishes from the perspective of both the r = 1, 2 strings and the r = 3 string.

In other words, in the limit ε → 0, the above vanishes as a distribution both acting on

well-behaved periodic functions defined on I and also on I1 and I2.

Hence we are left with a two-dimensional vector space which is spanned by w (4.15)–

(4.16) used in the main text

w = −e1 + e2 + e3 − e4 , (D.4)

and v defined by

v = e1 + e2 − e3 − e4 , (D.5)

or equivalently

v(σ) = δ

(
σ +

[σ1]

2

)
− δ

(
σ − [σ1]

2

)
, (D.6)

i.e.

v3m =
2i

[σ3]
sin

(
mπ

[σ1]

[σ3]

)
. (D.7)

As explained in detail in appendix E, w must be used instead of v, since this choice

assures the vanishing of the commutator [QD, P
−] to cubic order.
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D.2 Some mathematical properties of the overlap and the insertions

In this section we compile mathematical properties of v and w with the overlap, which is

associated with subtleties related to the interaction point. The formulae in this section

are not used in the main text. We nonetheless present them, since they may play a role

in case the need arise to improve the ansatze presented in the main text. The formulae

also somewhat clarify the relation of the insertion we used for tensionless strings and the

insertion used in [47–50] for tensile superstring field theories.

We will focus on the bosonic sector and denote the overlap by V omitting the subscript

B. Analogous properties hold for the fermionic sector as well.

We first introduce another basis-changing matrix (in the opposite direction compared

to (4.11)) defined by

x3n =
(
A−1

)3m
rnx

rn , (D.8)

where we hereafter use the convention in which the repeated index r is summed over 1, 2.

We will see below that the notation A−1 is somewhat inaccurate.

In [47–50], the form of the bosonic insertion Z is fixed by the requirement that it

satisfy

[Z, x(σ3)− x(σr)] = 0 , (D.9)

[Z, p(σ3) + p(σr)] = 0 , (D.10)

for σ ∈ Ir (r = 1, 2) in our notation. Let us consider a Z which is a linear combination of

xrm (r = 1, 2, 3),12

Z =
∑

r=1,2,3

∑
m

zrmx
rm . (D.11)

We need only consider (D.10) which can be re-expressed as

[Z, prn +A−1 3m
rnp3m] = 0 , (D.12)

or

[Z, p3m +Arn3mprn] = 0 , (D.13)

depending on the basis we use.

If we employ, say, the latter condition, this implies

z3m = −Arn3mzrn . (D.14)

Hence for any given zrn (r = 1, 2) we have an insertion

Z = zrn (Arn3m − xrn) , (D.15)

satisfying the condition (D.13).

However, if the Z obtained above acts on the overlap operator V , we have

zrn (Arn3m − xrn)
∏

δ
(
xrn −Arn3mx

3m
)

= 0 . (D.16)

12The arguments below go through with little modification even if we consider a general linear combination

of both x’s and p’s.

– 31 –



J
H
E
P
0
7
(
2
0
1
8
)
1
3
5

Thus all solutions of (D.13) seem to give a vanishing result when acting on V and thus

cannot be employed as the insertion.

This seemingly paradoxical result could actually have been anticipated. The condi-

tions, (D.9) and (D.10), mean that the r = 1, 2 strings and the r = 3 string are stitched

together. This is the same condition which defines V . Thus it is natural that the objects

satisfying (D.9) and (D.10) annihilate V . The stitching conditions, however, could fail

at the interaction point, where we expect them to become ill-defined. Thus any object

which does not annihilate V and satisfies (D.9) and (D.10) is necessarily associated with

the interaction point.

This ill-defined nature at the interaction point is reflected in the fact that the infinite-

dimensional matrix Arn3m has an eigenvector with zero eigenvalue,

Arn3mv
3m = 0 , (D.17)

where v is defined in (D.5). This can be verified directly using the formula

A1m1
3m3 = (−1)m1

1

π[σ1]
(
m3
[σ3] − m1

[σ1]

) sin

(
π

[σ1]

[σ3]
m3

)
, (D.18)

A2m2
3m3 = (−1)m2+1 1

π[σ2]
(
m3
[σ3] − m2

[σ2]

) sin

(
π

[σ1]

[σ3]
m3

)
. (D.19)

A geometrical understanding of this condition is as follows. v is a well defined delta function

(as a distribution) in the space of well-behaved (i.e. periodic with no gap) functions on the

interval I associated with the third string. However it gives vanishing contribution when

acting on well-behaved functions defined on I1, I2 corresponding to the first and the second

strings.

Similarly we have

A−1 3m
rnw

rn = 0 , (D.20)

which again can be verified directly and has a similar geometrical interpretation.

The existence of v, w means that the following expression

V ′ =
∏
m

δ(x3m − (A−1)3m
rnx

rn) , (D.21)

which formally is equivalent to V (up to an overall factor), is actually subtly different from

V .

Indeed, it can be shown that whereas

(x · v)V , (p · v)V , (x · w)V ′ , (p · w)V ′ , (D.22)

are non-zero, the other combinations are equal to zero

(x · w)V = 0 , (p · w)V = 0 , (x · v)V ′ = 0 , (p · v)V ′ = 0 . (D.23)

To understand this, it is instructive to consider the following integral

X =

∫
f(x)δ(x−Ax′)g(x′)d3xd3x′ , (D.24)
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where the matrix A is defined by

A =

1

1

0

 (D.25)

and the “wave functions” f(x) and g(x) decay sufficiently fast for |x| → ∞. Carrying out

the x′, y′ integral in the usual manner, we obtain

X =

∫
f(x, y, z)δ(z − 0)g(x, y, z′)dxdydzdz′

=

∫
f(x, y, 0)

(∫
g(x, y, z′)dz′

)
dxdy . (D.26)

We see that in the last expression the integral over z′ is performed first and acts only on

g. Thus the wave function g in the z′-direction is averaged over. Hence whereas inserting

∂z′ acting on g into (D.24) gives 0, the insertion of z′ gives, in general, a non-vanishing

contribution. On the other hand, the z-variable of f is bound firmly to 0. Hence in (D.24)

the insertion of ∂z acting on f is non-vanishing, while inserting z gives a vanishing result.

It is interesting to note that when one performs a Fourier transformation and uses the p-

representation instead of x-representation, the role of (V, V ′), (A,A−1), (v, w) is respectively

exchanged in (D.22) and (D.23). In particular, the momentum representations of V, V ′ are

V =
∏
m

δ (p3m −Arn3mprn) , (D.27)

V ′ =
∏
r=1,2

∏
n

δ
(
prn −A−1 3m

rnp3m

)
, (D.28)

up to an overall constant.

The list of non-zero insertions (D.22) shows that one can choose insertions which satisfy

relations such as (D.13) but are non-vanishing when acting on the overlap. These relations

may be useful to construct an ansatz of the cubic vertices satisfying the superalgebra.

However, there is a caveat associated with the smearing procedure explained in appendix E.

As discussed in appendix E, it seems that we need to introduce a smearing of the

insertions, say, p̃·w = p·w̃. It turns out that the identities (D.17), (D.20), and hence (D.23),

become invalid for any finite smearing. For example,

lim
ε→0

Aṽ 6= 0 , (D.29)

while it is true that

Av = 0 , (D.30)

and

lim
ε→0

ṽ = v . (D.31)

Thus the limit involved in the infinite sum over the mode numbers in the computation of

Av does not commute with the limit ε→ 0. This is because there is a number of order ∼ 1
ε

of terms contributing to the sum Av, each of which behaves as ε.
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Thus, although (D.23) seems to prohibit the use of some insertions (since they vanish),

the introduction of the smearing makes it possible to use them. Also, when smearing is

introduced, one can ignore the subtle difference between V and V ′. This is natural since

the difference is associated with the singularity strictly at the interaction point.

E Smearing and test functionals

E.1 Computation of commutators with smearing

In the computations of the commutators described in section 5.2, we encounter the mul-

tiplication of operators defined at the same point in σ-space. In order to perform the

computation in a well defined manner we introduce a regularisation of the operators by

using a smearing procedure.

Here we will define the smearing procedure and compute, as an example, the commu-

tator [
Q

(0)
DȧA, Q

(1)

DḃB

]
+
[
Q

(1)
DȧA, Q

(0)

DḃB

]
=
√

2εȧḃCABP
−(1) (E.1)

using the smeared operators.

We define a smeared version of the momentum density p(σ) by

p̃(σ) =

∫
f(σ, σ′)p(σ′)dσ′ . (E.2)

One can choose, as the kernel function f(σ, σ′), any regularisation of the Dirac delta func-

tion. For definiteness, we choose

f(σ, σ′) =

{
1
2ε for σ − ε ≤ σ′ ≤ σ + ε

0 otherwise
, (E.3)

where ε� 1 is the parameter of the smearing. If σ is close to the interaction point and/or

the boundary of the interval on which σ is defined, the above formula should be modified

appropriately so that the correct periodicity is maintained.

To regularise the terms in the supercharge that are quadratic and cubic in the string

field one replaces p(σ) in (3.20) and (5.2) by its smeared version p̃(σ),

Q
(0)
DȧA =

∫
1√
2
q̃bA(σ)

1

p+
εbcp̃α(σ)σαcȧdσ , (E.4)

Q
(1)
DȧA = f IJK

∫
φP+

3 I

×
(

(p̃α · w)(σαbȧd̃bA · w)(p+)λ0(P+
1 )λ1(P+

2 )λ2(P+
3 )λ3δ(P+

1 + P+
2 − P+

3 )V
)

× φP+
1

JφP+
2

K
3∏
r=1

dP+
r DθrDxr . (E.5)

The computation of [Q
(0)
D , Q

(1)
D ] involves

[d̃aA(σ), d̃bB(σ′)] = 2p+εabCABf
′(σ − σ′) , (E.6)
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where f ′ is given by the convolution integral,

f ′(σ, σ′) =

∫
f(σ, σ′′)f(σ′, σ′′)dσ′′

=

−
|σ−σ′|
(2ε)2

+ 1
2ε for σ − 2ε ≤ σ′ ≤ σ + 2ε

0 otherwise
, (E.7)

satisfying ∫
f ′(σ, σ′)dσ′ = 1 . (E.8)

Using (E.7) as well as (E.3), the resulting commutator can be written as[
Q

(0)
DȧA, Q

(1)

DḃB

]
= 2CABεȧḃf

I
JK

∫
φP+

3 I

×
(

(p̃α · w)(p̃′α · w)(p+)λ0(P+
1 )λ1(P+

2 )λ2(P+
3 )λ3δ(P+

1 + P+
2 − P+

3 )V
)

× φP+
1

JφP+
2

K
3∏
r=1

dP+
r DθrDxr , (E.9)

where

p̃′α(σ) =

∫
f ′(σ, σ′)pα(σ′)dσ′ , (E.10)

is a smeared version of pα(σ).

From (E.9), one obtains

P−(1)

= 2
√

2f IJK

∫
φP+

3 I

(
(p̃α · w)(p̃′α · w)(p+)λ0(P+

1 )λ1(P+
2 )λ2(P+

3 )λ3δ(P+
1 + P+

2 − P+
3 )V

)
× φP+

1

JφP+
2

K
3∏
r=1

dP+
r DθrDxr . (E.11)

E.2 Test functionals

We also occasionally have to deal with complicated expressions involving delta functions

at the interaction point and delta functionals connecting the first and second strings to the

third string. In order to deal with these expressions, it is often useful to introduce a set of

test functionals and see how these expressions act on those test functionals.

The test functionals should be sufficiently general. The set of the test functionals we

choose is, for a single string,

φk[x] = e−
α
4
p+
∫
x(σ)2dσ × ei

∫
k(σ)x(σ)dσ , (E.12)

where k(σ), which is a smooth periodic function of σ, and α are the parameters of the test

functional.

When dealing with string interactions, we use

φr[xr] = e−
α
4
p+
∫
xr(σr)2dσr × ei

∫
kr(σr)xr(σr)dσr , r = 1, 2, 3 , (E.13)
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where kr(σr) are the parameters of the test functional. Each kr(σr) is a smooth periodic

function defined on σr ∈ [−[σr]/2,+[σr]/2].

These test functionals are generalised Gaussian wave packets. This is natural for a

tensionless string, which is a collection of free particles associated with each value of σ.

The probability distributions |φk|2 at each point in σ are uncorrelated. The distribution

corresponds to Gaussian white noise (used for example in describing Brownian motion).

The width of the Gaussian is proportional to α−1. The factor of p+ in the exponent makes

it invariant under trivial rescalings of the σ coordinate. Also, one has the same Gaussian

weight locally for all strings when an interaction is considered, since p+ is common to all

three strings due to momentum conservation implying P+
1 + P+

2 = P+
3 .

We evaluate the expressions by sandwiching them between test functionals. We first

consider basic building blocks in such an analysis. By standard manipulations of Gaussian

integrals (involving completing the square in the exponent and a shift of the integration

contour in the complex plane), we obtain∫
φ′k p(σ) φkDx =

∫ (
i

2
αp+x(σ) + k(σ)

)
e−

α
2
p+
∫
x2dσ+i

∫
(k−k′)xdσDx

=

∫ (
i

2
αp+x+ k

)
(σ)e

−α
2
p+
∫ (
x−i k−k

′
αp+

)2
dσDx× e−

(k−k′)2

2αp+
dσ

=

∫ (
i

2
αp+

(
x+ i

k − k′
αp+

)
+ k

)
(σ)e−

α
2
p+
∫
x2dσDx× e−

(k−k′)2

2αp+
dσ

=
k + k′

2
(σ)×N e−

(k−k′)2

2αp+
dσ
. (E.14)

Here N is an (infinite) normalisation constant, which may be absorbed into the definition

of the test functionals φ(k).

We further have,∫
φ′k p(σ)p(σ′)φkDx

=

∫ ((
i

2
αp+x+

k + k′

2

)
(σ)

(
i

2
αp+x+

k + k′

2

)
(σ′) +

α

2
p+δ(σ′ − σ)

)
× e−α2 p+

∫
x2dσDx× e−

(k−k′)2

2αp+
dσ

=

(
α

4
p+δ(σ − σ′) +

k + k′

2
(σ)

k + k′

2
(σ′)

)
×N e−

(k−k′)2

2αp+
dσ
. (E.15)

These results can be understood as following from Wick’s theorem with non-zero one

point functions. Namely, we can write

〈p(σ)〉 =
k + k′

2
(σ) , (E.16)

〈p(σ)p(σ′)〉 = 〈p(σ)〉〈p(σ′)〉+ p(σ)p(σ′)

=
k + k′

2
(σ)

k + k′

2
(σ′) +

α

4
p+δ(σ − σ′) , (E.17)

where we omit the common factor N e−
(k−k′)2

2αp+
dσ

.
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This pattern continues and we have, e.g.,

〈p(σ)p(σ′)p(σ′′)〉

= 〈p(σ)〉〈p(σ′)〉〈p(σ′′)〉+ 〈p(σ)〉p(σ′)p(σ′′) + p(σ)〈p(σ′)〉p(σ′′) + p(σ)p(σ′)〈p(σ′′)〉

=
k + k′

2
(σ)

k + k′

2
(σ′)

k + k′

2
(σ′′) (E.18)

+
k + k′

2
(σ)

α

4
p+δ(σ′ − σ′′) +

k + k′

2
(σ′)

α

4
p+δ(σ − σ′′) +

k + k′

2
(σ′′)

α

4
p+δ(σ − σ′) .

The use of Wick contractions here is reminiscent of that in the treatment of the Brownian

motion. It may also play a similar role, for the tensionless string theory, to the simplifica-

tions via CFT techniques in ordinary string theory [96, 97].

If we consider a smeared version of
∫
p2dσ,∫

f(σ, σ′)p(σ)p(σ′)dσdσ′ , (E.19)

for a generic kernel f(σ, σ′), we have,〈∫
f(σ, σ′)p(σ)p(σ′)dσdσ′

〉
=

∫
f(σ, σ′)

k + k′

2
(σ)

k + k′

2
(σ′)dσ +

∫
f(σ, σ)

α

4
p+dσ .

(E.20)

The first term in this expression has a well defined limit when ε→ 0. The second term, on

the other hand, depends on the choice of the kernel function and generically is of order 1
ε .

It is natural to drop the second term when evaluating these expressions. This is analogous

to taking the normal order in tensile string theory. The steps used in defining a normal

ordered form are: (i) regularisation of the product of operators, for instance by point-

splitting, (ii) evaluation of matrix elements, (iii) subtraction of divergent terms. In our

case the analog of step (i) is smearing, (ii) involves the sandwiching by test functionals

and (iii) corresponds to discarding the second term in the above formula.

E.3 Sample computation using test functionals

In order to discuss [QD, P
−], it is instructive first to consider the following expression∫

φ̄3

(∫
p3(σ3)2dσ3 −

∫
p1(σ1)2dσ1 −

∫
p2(σ2)2dσ2

)
V φ1φ2Dx1Dx2Dx3 . (E.21)

Formal application of (5.33) seems to imply that this expression vanishes. However,

whether that is true has to be carefully examined because of the singularity associated

with the multiplication of p’s at the same point in the above formula.

We first introduce the smearing to the above,∫
φ̄3

(∫
p̃3(σ3)2dσ3 −

∫
p̃1(σ1)2dσ1 −

∫
p̃2(σ2)2dσ2

)
V φ1φ2Dx1Dx2Dx3 , (E.22)

where p̃r is the smeared momentum density defined for the r-th string.
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For brevity, we introduce p12(σ), defined on the whole interval I, which coincides with

pr(σr) for σ ∈ Ir (r = 1, 2). Similarly, we also define k12(σ) out of k1(σ1) and k2(σ2). We

have ∫
p̃3(σ3)2dσ3 −

∫
p̃1(σ1)2dσ1 −

∫
p̃2(σ2)2dσ2

=

∫ (
p̃3(σ)2 − p̃12(σ)2

)
dσ

=

∫ (
p3(σ)p3(σ′)f3(σ, σ′)− p12(σ)p12(σ′)f12(σ, σ′)

)
dσdσ′ . (E.23)

Here f3(σ, σ′) and f12(σ, σ′) are kernels for the smearing associated with the third string

and the first-second strings. f3 and f12 are different because they should obey different

periodicity conditions. They are the same except when σ and σ′ are sufficiently close (of

the order of the length scale ε of smearing) to the interaction point.

Using (5.33) and eliminating the delta functional V , (E.22) becomes∫
φ̄k3

∫
p(σ)p(σ′)

(
f3(σ, σ′)− f12(σ, σ′)

)
dσdσ′φk12Dx . (E.24)

Using the short-hand notation introduced in the previous subsection, we have〈∫
p(σ)p(σ′)(f3(σ, σ′)− f12(σ, σ′))dσdσ′

〉
=

〈∫ (α
4
p+δ(σ − σ′) + k(σ)k(σ′)

)
(f3(σ, σ′)− f12(σ, σ′))dσdσ′

〉
=

〈∫ (
k(σ)k(σ′)

) (
f3(σ, σ′)− f12(σ, σ′)

)
dσdσ′

〉
, (E.25)

where k(σ) = k12(σ)+k3(σ)
2 . To obtain the last line we used f3(σ, σ) = f12(σ, σ).

The expression f3(σ, σ′)− f12(σ, σ′) is non-zero only if σ is sufficiently near the inter-

action point. Examining the behaviour of this expression for each possible case of σ (the

left/right of the first/second interaction points on I) and of σ′, we find that, effectively,

f3(σ, σ′)− f12(σ, σ′) ∼ εṽ(σ)ṽ(σ′) , (E.26)

for ε� 1, where ṽ(σ) is a smeared version of v(σ) (a linear combination of delta functions

having singularities at the vicinity of the interaction point) defined in (D.5). Here we

omitted an unimportant numerical constant in the r.h.s.

Using this, (E.22) becomes finally

εv · kv · k , (E.27)

and thus goes to zero when ε → 0. Thus, we have shown that, for the case of (E.21),

formal manipulations using (5.33) are indeed justified by means of the smearing and the

test functionals.

– 38 –



J
H
E
P
0
7
(
2
0
1
8
)
1
3
5

E.4 [QD, P
−] via smearing and test functionals

Now we consider [P−, QD] = 0. There are two contributions in the cubic order, [P−(0), Q
(1)
D ]

and [P−(1), Q
(0)
D ]. The latter can be computed in the manner presented in section 5.2 and

vanishes. For the former, one can perform a similar computation which yields an expression

of the following form

p̃ · wq̃ · w
∫ (

p̃3(σ)2 − p̃12(σ)2
)
dσV , (E.28)

where we omit all unimportant factors. We have to verify that this expression vanishes

which needs to be justified using smearing and the test functionals.

Firstly, we notice that the fermionic insertion q̃·w plays no important role. It will give a

non-singular and non-zero contribution if we introduce appropriate fermionic contributions

in the definition of the test functionals.

Thus we will focus on, by using test functionals,∫
φ̄3p̃ · w

∫ (
p̃3(σ)2 − p̃12(σ)2

)
dσV φ1φ2Dx1Dx2Dx3 . (E.29)

We proceed in a manner similar to the previous subsection.Using (5.33) and eliminating

V , (E.29) can be recast into∫
φk3 p̃ · w

∫
p(σ)p(σ′)

(
f3(σ, σ′)− f12(σ, σ′)

)
dσdσ′φk12Dx . (E.30)

In the short-hand notation this becomes, using p̃ · w = p · w̃,∫
dσdσ′dσ′′w̃(σ′′)

(
f3(σ, σ′)− f12(σ, σ′)

) 〈
p(σ′′)p(σ)p(σ′)

〉
=

∫
dσdσ′dσ′′w̃(σ′′)

(
f3(σ, σ′)− f12(σ, σ′)

)
(E.31)

×
(
〈p(σ)〉〈p(σ′)〉〈p(σ′′)〉+ 〈p(σ)〉p(σ′)p(σ′′) + p(σ)〈p(σ′)〉p(σ′′) + p(σ)p(σ′)〈p(σ′′)〉

)
.

Using (E.18), and then f12(σ, σ) = f3(σ, σ) and (E.26), this becomes, omitting an unim-

portant overall numerical factor,

∼ ε(k̃ · v)2k̃ · w +
α

2
p+εk · ṽṽ · w̃ . (E.32)

The first term vanishes in the limit ε→ 0. This is also the case for the second term because

v · w = 0.

An important point here is that had we chosen to construct the ansatz in terms of

v, the second term would have become 2εk̃ · vṽ · ṽ. This gives a finite contribution, since

ṽ · ṽ ∼ 1
ε . This would be inconsistent with the superalgebra. This justifies our use of w,

rather than v, for insertions in our ansatz of the dynamical supercharge.

We also notice that formal application of (5.33) to (E.29) yields zero automatically

irrespective of the choice of v or w in the insertion. The smearing and the test functional

method we developed show that such formal application is not allowed due to the singu-

larity associated with multiplication of p(σ)’s at the same point. A contribution to the

commutator [P−,M−α] in light-cone gauge bosonic string theory arising by essentially the

same mechanism is discussed in [53]. There the critical dimension d = 26 follows from

requiring that the contribution vanishes.
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