14 research outputs found

    Gradual alteration of mitochondrial structure and function by β-amyloids: importance of membrane viscosity changes, energy deprivation, ROS production and cytochrome c release.

    No full text
    Intracellular amyloid beta-peptide (Abeta) accumulation is considered to be a key pathogenic factor in sporadic Alzheimer's disease (AD), but the mechanisms by which it triggers neuronal dysfunction remain unclear. We hypothesized that gradual mitochondrial dysfunction could play a central role in both initiation and progression of sporadic AD. Thus, we analyzed changes in mitochondrial structure and function following direct exposure to increasing concentrations of Abeta(1-42) and Abeta(25-35) in order to look more closely at the relationships between mitochondrial membrane viscosity, ATP synthesis, ROS production, and cytochrome c release. Our results show the accumulation of monomeric Abeta within rat brain and muscle mitochondria. Subsequently, we observed four different and additive modes of action of Abeta, which were concentration dependent: (i) an increase in mitochondrial membrane viscosity with a concomitant decrease in ATP/O, (ii) respiratory chain complexes inhibition, (iii) a potentialization of ROS production, and (iv) cytochrome c release

    Loss of function of the mitochondrial peptidase PITRM1 induces proteotoxic stress and Alzheimer\u2019s disease-like pathology in human cerebral organoids

    Get PDF
    Mutations in pitrilysin metallopeptidase 1 (PITRM1), a mitochondrial protease involved in mitochondrial precursor processing and degradation, result in a slow-progressing syndrome characterized by cerebellar ataxia, psychotic episodes, and obsessive behavior, as well as cognitive decline. To investigate the pathogenetic mechanisms of mitochondrial presequence processing, we employed cortical neurons and cerebral organoids generated from PITRM1-knockout human induced pluripotent stem cells (iPSCs). PITRM1 deficiency strongly induced mitochondrial unfolded protein response (UPRmt) and enhanced mitochondrial clearance in iPSC-derived neurons. Furthermore, we observed increased levels of amyloid precursor protein and amyloid \u3b2 in PITRM1-knockout neurons. However, neither cell death nor protein aggregates were observed in 2D iPSC-derived cortical neuronal cultures. On the other hand, over time, cerebral organoids generated from PITRM1-knockout iPSCs spontaneously developed pathological features of Alzheimer\u2019s disease (AD), including the accumulation of protein aggregates, tau pathology, and neuronal cell death. Single-cell RNA sequencing revealed a perturbation of mitochondrial function in all cell types in PITRM1-knockout cerebral organoids, whereas immune transcriptional signatures were substantially dysregulated in astrocytes. Importantly, we provide evidence of a protective role of UPRmt and mitochondrial clearance against impaired mitochondrial presequence processing and proteotoxic stress. Here, we propose a novel concept of PITRM1-linked neurological syndrome whereby defects of mitochondrial presequence processing induce an early activation of UPRmt that, in turn, modulates cytosolic quality control pathways. Thus, our work supports a mechanistic link between mitochondrial function and common neurodegenerative proteinopathies

    Bax activation and stress-induced apoptosis delayed by the accumulation of cholesterol in mitochondrial membranes

    No full text
    Activation of Bax or Bak is essential for the completion of many apoptotic programmes. Under cytotoxic conditions, these proteins undergo a series of conformational rearrangements that end up with their oligomerization. We found that unlike inactive monomeric Bax, active oligomerized Bax is partially resistant to trypsin digestion, providing a convenient read out to monitor Bax activation. Using this assay, we studied how the lipid composition of membranes affects tBid-induced Bax activation in vitro with pure liposomes. We report that Bax activation is inhibited by cholesterol and by decreases in membrane fluidity. This observation was further tested in vivo using the drug U18666A, which we found increases mitochondrial cholesterol levels. When incubated with tBid, mitochondria isolated from U18666A-treated cells showed a delay in the release of Smac/Diablo and Cytochrome c, as well as in Bax oligomerization. Moreover, pre-incubation with U18666A partially protected cells from stress-induced apoptosis. As many tumours display high mitochondrial cholesterol content, inefficient Bax oligomerization might contribute to their resistance to apoptosis-inducing agents
    corecore