31,410 research outputs found
Gravitational collapse of the OMC-1 region
We have investigated the global dynamical state of the Integral Shaped
Filament in the Orion A cloud using new NH (1-0) large-scale, IRAM30m
observations. Our analysis of its internal gas dynamics reveals the presence of
accelerated motions towards the Orion Nebula Cluster, showing a characteristic
blue-shifted profile centred at the position of the OMC-1 South region. The
properties of these observed gas motions (profile, extension, and magnitude)
are consistent with the expected accelerations for the gravitational collapse
of the OMC-1 region and explain both the physical and kinematic structure of
this cloud.Comment: 5 pages, 2 figures; Accepted by A&
A low-mass stellar companion of the planet host star HD75289
We report on the detection of a new low-mass stellar companion of HD75289, a
G0V star that harbors one known radial-velocity planet (Udry et al. 2000).
Comparing an image of 2MASS with an image we obtained with SofI at the ESO
3.58m NTT three years later, we detected a co-moving companion located
21.465+-0.023arcsecs (621+-10AU at 29pc) east of HD75289. A second SofI image
taken 10 months later confirmed the common proper motion of HD75289B with its
host star. The infrared spectrum and colors of the companion are consistent
with an M2 to M5 main-sequence star at the distance of HD75289. No further
(sub)stellar companion down to H = 19mag could be detected. With the SofI
detection limit we can rule out additional stellar companions beyond 140AU and
substellar companions with masses m > 0.050Msun from 400AU up to 2000AU.Comment: accepted in A&
Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering
Twisted Laguerre-Gaussian lasers, with orbital angular momentum and
characterised by doughnut shaped intensity profiles, provide a transformative
set of tools and research directions in a growing range of fields and
applications, from super-resolution microcopy and ultra-fast optical
communications to quantum computing and astrophysics. The impact of twisted
light is widening as recent numerical calculations provided solutions to
long-standing challenges in plasma-based acceleration by allowing for high
gradient positron acceleration. The production of ultrahigh intensity twisted
laser pulses could then also have a broad influence on relativistic
laser-matter interactions. Here we show theoretically and with ab-initio
three-dimensional particle-in-cell simulations, that stimulated Raman
backscattering can generate and amplify twisted lasers to Petawatt intensities
in plasmas. This work may open new research directions in non-linear optics and
high energy density science, compact plasma based accelerators and light
sources.Comment: 18 pages, 4 figures, 1 tabl
A new look at the 2D Ising model from exact partition function zeros for large lattice sizes
A general numerical method is presented to locate the partition function
zeros in the complex beta plane for large lattice sizes. We apply this method
to the 2D Ising model and results are reported for square lattice sizes up tp
L=64. We also propose an alternative method to evaluate corrections to scaling
which relies only on the leading zeros. This method is illustrated with our
data.Comment: 9 pages, Latex, 3 figures. To appear in Int. J. Mod. Phys.
Shear viscosity and nonlinear behaviour of whole blood under large amplitude oscillatory shear
We investigated experimentally the rheological behavior of whole human blood subjected to large amplitude oscillatory shear under strain control to assess its nonlinear viscoelastic response. In these rheological tests, the shear stress response presented higher harmonic contributions, revealing the nonlinear behavior of human blood that is associated with changes in its internal microstructure. For the rheological conditions investigated, intra-cycle strain-stiffening and intra-cycle shear-thinning behavior of the human blood samples were observed and quantified based on the Lissajous–Bowditch plots. The results demonstrated that the dissipative nature of whole blood is more intense than its elastic component. We also assessed the effect of adding EDTA anticoagulant on the shear viscosity of whole blood subjected to steady shear flow. We found that the use of anticoagulant in appropriate concentrations did not influence the shear viscosity and that blood samples without anticoagulant preserved their rheological characteristics approximately for up to 8 minutes before coagulation became significant
Exact solution for the energy density inside a one-dimensional non-static cavity with an arbitrary initial field state
We study the exact solution for the energy density of a real massless scalar
field in a two-dimensional spacetime, inside a non-static cavity with an
arbitrary initial field state, taking into account the Neumann and Dirichlet
boundary conditions. This work generalizes the exact solution proposed by Cole
and Schieve in the context of the Dirichlet boundary condition and vacuum as
the initial state. We investigate diagonal states, examining the vacuum and
thermal field as particular cases. We also study non-diagonal initial field
states, taking as examples the coherent and Schrodinger cat states.Comment: 10 pages, 8 figure
- …