26,247 research outputs found

    Interaction Induced Quantum Valley Hall Effect in Graphene

    Get PDF
    We use Pseudo Quantum Electrodynamics (PQED) in order to describe the full electromagnetic interaction of the p-electrons of graphene in a consistent 2D formulation. We first consider the effect of this interaction in the vacuum polarization tensor or, equivalently, in the current correlator. This allows us to obtain the dc conductivity after a smooth zero-frequency limit is taken in Kubo's formula.Thereby, we obtain the usual expression for the minimal conductivity plus corrections due to the interaction that bring it closer to the experimental value. We then predict the onset of an interaction-driven spontaneous Quantum Valley Hall effect (QVHE) below a critical temperature of the order of 0.050.05 K. The transverse (Hall) valley conductivity is evaluated exactly and shown to coincide with the one in the usual Quantum Hall effect. Finally, by considering the effects of PQED, we show that the electron self-energy is such that a set of P- and T- symmetric gapped electron energy eigenstates are dynamically generated, in association with the QVHE.Comment: 5 pages + supplemental materia

    Unitarity of theories containing fractional powers of the d'Alembertian operator

    Get PDF
    We examine the unitarity of a class of generalized Maxwell U(1) gauge theories in (2+1) D containing the pseudodifferential operator □1−α\Box^{1-\alpha}, for α∈[0,1)\alpha \in [0,1). We show that only Quantum Electrodynamics (QED3_3) and its generalization known as Pseudo Quantum Electrodynamics (PQED), for which α=0\alpha =0 and α=1/2\alpha = 1/2, respectively, satisfy unitarity. The latter plays an important role in the description of the electromagnetic interactions of charged particles confined to a plane, such as in graphene or in hetero-junctions displaying the quantum Hall effect.Comment: 6 pages, no figure

    The low-mass population of the Rho Ophiuchi molecular cloud

    Full text link
    Star formation theories are currently divergent regarding the fundamental physical processes that dominate the substellar regime. Observations of nearby young open clusters allow the brown dwarf (BD) population to be characterised down to the planetary mass regime, which ultimately must be accommodated by a successful theory. We hope to uncover the low-mass population of the Rho Ophiuchi molecular cloud and investigate the properties of the newly found brown dwarfs. We use near-IR deep images (reaching completeness limits of approximately 20.5 mag in J, and 18.9 mag in H and Ks) taken with the Wide Field IR Camera (WIRCam) at the Canada France Hawaii Telescope (CFHT) to identify candidate members of Rho Oph in the substellar regime. A spectroscopic follow-up of a small sample of the candidates allows us to assess their spectral type, and subsequently their temperature and membership. We select 110 candidate members of the Rho Ophiuchi molecular cloud, from which 80 have not previously been associated with the cloud. We observed a small sample of these and spectroscopically confirm six new brown dwarfs with spectral types ranging from M6.5 to M8.25
    • 

    corecore