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Unitarity of theories containing fractional powers of the d’Alembertian operator
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We examine the unitarity of a class of generalized Maxwell U(1) gauge theories in (2+1) D
containing the pseudodifferential operator �

1−α, for α ∈ [0, 1). We show that only Quantum Elec-
trodynamics (QED3) and its generalization known as Pseudo Quantum Electrodynamics (PQED),
for which α = 0 and α = 1/2, respectively, satisfy unitarity. The latter plays an important role in
the description of the electromagnetic interactions of charged particles confined to a plane, such as
in graphene or in hetero-junctions displaying the quantum Hall effect.

PACS numbers: 11.15.-q, 11.10.Lm, 11.55.Bq

I. INTRODUCTION

Unitarity is an important necessary condition for the
consistency of any quantum theory. Consider the time
evolution operator U(t, 0), defined as

|Ψ(t)〉 = U(t, 0)|Ψ(0)〉, (1)

where |Ψ(t)〉 is the state-vector at instant t. The unitar-
ity of the time-evolution operator, namely the property
U †U = UU † = I, where I is the identity operator, guar-
antees that the norm of the state-vectors, chosen equal
to one, is preserved in time. Since the state-vector can
be expanded in the eigenstates of any observable A, it
follows that its norm is equal to the sum of the proba-
bilities for the possible outcomes of any measurement of
A. Unitarity implies that this sum of probabilities re-
mains equal to one at any time, an essential condition
for the probabilistic description of a system. For a time-
independent Hamiltonian, we have U(t, 0) = exp(−iHt).
Unitarity then implies that the Hamiltonian is a hermi-
tian operator and therefore the energy eigenvalues are
real. This property and the conservation of the sum of
probabilities are crucial conditions for the stabillity of a
quantum-mechanical system [1].
Another consequence of the unitarity of the time-

evolution operator is that the scattering matrix, which
connects the asymptotic states after a scattering event
to the ones before it, must also be unitary. Assuming
the completeness of the asymptotic states, then it follows
that the S-matrix elements form a matrix representation
of a unitary scattering operator S = 1+ i T . Unitarity of
the S-operator, namely, S†S = 1, implies

i (T † − T ) = T †T. (2)

This relation leads to the optical theorem, which relates
the forward scattering amplitude to the total cross sec-
tion of the scatterer. A very convenient way of testing
the consistency of a theory is then provided by the opti-

cal theorem, which is satisfied by unitary theories (for a
nice review about the optical theorem see the Ref. [2]).
In this paper, we examine the unitarity of a class of

generalized Maxwell U(1) gauge theories in (2+1)D by
using the optical theorem. For an appropriate choice of
the gauge, the equations of motion for these theories are
�

1−αAµ = 0, for any α ∈ [0, 1). We show that only the
choices α = 0 or α = 1/2 corresponding, respectively,
to QED3 and the so-called pseudoQED (PQED) provide
a self-consistent solution to the optical theorem. Par-
ticularly, the choice α = 1/2 is also consistent with the
Huygens principle Ref. [3]. The unitarity of PQED is
first proven at the tree level, and then for the interacting
case.
The outline of this paper is the following: In Sec. II we

revise the PQED and propose its generalization to any
α. In Sec. III we show that only α = 0 or α = 1/2 are
possible choices in order to obtain a self-consistent solu-
tion of the optical theorem. Both cases are considered at
the tree level, with no source term in the equation of mo-
tion. In Sec. IV we use the RPA approach to show that
the version of PQED used to describe the electronic in-
teraction in graphene is also unitary. In Sec. V we adopt
perturbation theory up two loop to show that the PQED
is an unitary theory.

II. THE PQED AND ITS GENERALIZATIONS

A. The Derivation of PQED

The discovery of condensed matter systems with phys-
ical properties that are essentially two-dimensional has
fostered the investigation of (2+1)D theories, which could
appropriately describe them. Among these we find the
GaAs quantum wells exhibiting the quantum Hall effect,
the high-Tc cuprates and graphene [4]. In such systems,
a crucial issue is the description of the electronic interac-
tion, which naturally is electromagnetic (EM). For this
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matter, one must consider that the interaction among
the electrons is usually mediated by a (spacially) three-
dimensional field in spite of the fact that the electron
kinematics is confined to a plane. For the sake of conve-
nience, simplicity and elegance, however, it is preferable
to provide a completely (2+1)-dimensional description of
the real electromagnetic interaction among the electrons.
This is achieved [5–8] by a theory, coined Pseudo Quan-
tum Electrodynamics (PQED), which was also used in
the bosonization of the massless Dirac field in (2+1)D
[9]. Dynamical mass generation for massless electrons
also was studied for this model [10].
In this section, for the sake of completeness, we review

the main steps of the derivation contained in Ref. [5]. We
start from standard QED4, in (3+1)D:

LQED = −1

4
FµνF

µν − e jµ3+1Aµ + Lm, (3)

where jµ3+1 and Lm are, respectively, the electronic cur-
rent and kinetic Lagrangian. Aµ is the gauge field, Fµν

is the usual field-strength tensor.
The electromagnetic field induces an effective current-

current interaction on the electrons, which is captured by
the functional (in Euclidean space)

ZQED[jµ3+1] = Z−1
0

∫

DAµ exp

{

−
∫

d4ξLQED

}

, (4)

where ξ = (x, y, z, τ) and Z0 is a normalization constant
which guarantees that Z[0] = 1. The functional integra-
tion above can be carried out by including a gauge fixing
term, yielding

ZQED[jµ3+1] = exp

{

−e
2

2

∫

d4ξd4ξ′ jµ3+1(ξ)

× Gµν
QED(ξ − ξ′)jν3+1(ξ

′)
}

, (5)

where Gµν
QED is the Euclidean propagator of the electro-

magnetic field, which is given by

Gµν
QED(ξ − ξ′) = δµν

∫

d4k

(2π)4
eik·(ξ−ξ′)

k2
+ gt, (6)

where gt stands for “gauge dependent terms”. These, by
the way, do not contribute for Eq. (5).
We now introduce the fact that the electrons are sup-

posed to move on a plane at z = 0, thus forming a spa-
tially two-dimensional system. The electronic current,
accordingly, is given by

jµ3+1(ξ) =

{

jµ(x, y, τ)δ(z), µ = 0, 1, 2,
0, µ = 3.

(7)

Inserting Eq. (7) in Eq. (5) and integrating over z and
z′, we get

ZQED[jµ] = exp

{

−
∫

d3ηd3η′ jµ(η)

× Gµν
QED(η − η′; z = z′ = 0)jν(η′)

}

, (8)

where η = (x, y, τ) and

Gµν
QED(η − η′; z = z′ = 0) =

δµν

8π2|η − η′|2 + gt. (9)

The expression above is the 4-dimensional QED Eu-
clidean propagator, calculated at z = z′ = 0.
Now comes a key step in our derivation. This is the

realization that Eq. (9) can be written as a 3-dimensional
Fourier integral, namely

1

8π2|η − η′|2 =

∫

d3k3D
(2π)3

eik3D ·(η−η′)

4
√

k23D
, (10)

and this is the euclidean propagator of PQED [5], corre-
sponding to the strictly (2+1)-dimensional Lagrangian

LPQED = −1

4
Fµν

[

4

(−�)1/2

]

Fµν − e jµAµ + Lm, (11)

Inserting Eq. (9) and Eq. (10) in Eq. (8), we can imme-
diately realize that

ZQED[jµ] = Z−1
0

∫

DAµ exp

{

−
∫

d3ηLPQED

}

. (12)

The above derivation shows that all the electronic
properties determined by QED4, when projected on a
plane are described by a strictly (2+1)-dimensional the-
ory, namely PQED. In connection to this point, one could
argue whether PQED provides a description of the cor-
relation functions of QED4. The Aµ correlators are gen-
erated by coupling an external source Jµ

3+1 in Eq. (4),
namely

jµ3+1 → jµ3+1 + Jµ
3+1,

and subsequently taking functional derivatives of ZQED

with respect to this source. Assuming it has the same
structure as the electronic current given by Eq. (7), it
follows that functional derivatives with respect to the
(2+1)-dimensional external source taken in PQED will
generate the projected correlators, as it occurred with
the two-point function in Eq. (9).

B. Generalized PQED

We will consider here a class of theories in (2+1)D,
which contain PQED and QED3 as particular cases.
These are given by

L = −1

4
Fµν

[

4

(−�)α

]

Fµν − e jµAµ + Lm, (13)

where 0 ≤ α < 1. For a proper choice of the gauge
condition, the U(1) vector field satisfies the equation

�
1−αAµ = e jµ, (14)
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which is pseudodifferential for α 6= 0. For α = 0, the the-
ory above is just Maxwell QED3. In the previous section,
we have shown that the case α = 1/2, namely PQED, is
relevant for the description of the electromagnetic inter-
actions of two-dimensional systems. In this case, Eq. (13)
provides a full description of the real electromagnetic in-
teraction for electrons confined on a plane [5].
In the above Lagrangian, the first term reads

Fµν (η)

∫

d3η′
∫

d3k

(2π)3
e−ik�(η−η′)

(k2)α
Fµν(η′), (15)

where k = (k, ω) (we excluded the index “3D” for sim-
plicity) and η = (r, τ). The non-locality of the prop-
agator is a consequence of the dimensional reduction
performed in order to generate the (3+1)D propagator
within (2+1)D space. A similar fact occurs when we in-
tegrate out parts of the system degrees of freedom as, for
instance, in the Caldeira-Leggett model for dissipative
quantum mechanics [11].
Nevertheless, in spite of being non-local, the theories

described by Eq. (13) do respect causality. Indeed, it
has been shown that the classic (retarded and advanced)
Green functions vanish outside of the light-cone for any
α, thus preserving causality [7]. For the special case of
α = 1/2, the classic Green functions reduce to a delta
function on the light-cone surface [7]. The interesting
consequence of this property is that the theory will obey
Huygens principle in this case [3, 7], while QED3 does
not obey it.
We see that the theories described by Eq. (13) satisfy

causality despite the apparent non-locality, but it is not
a priori obvious whether they respect unitarity. In the
present work, we shall test the unitarity of those theories
through the application of the optical theorem.

III. UNITARITY AT TREE LEVEL

Let us investigate here the unitarity of the theories
given by Eq. (13) by considering the free Feynman prop-
agator (tree level) in connection to the optical theorem.
We use the Feynman prescription k2 → k2+iε in order to
define the gauge field propagator corresponding to (13)

Gµν
F (t, r) =

1

4
PµνDF (t, r), (16)

where

Pµν = gµν − ∂µ∂ν
�2

(17)

is the transverse projector, gµν is the Minkowski metric,
and DF (t, r) is the corresponding scalar propagator, in
the Minkowski space. Thus, we replace τ by t, therefore
we have

DF (t, r) =

∫

dω

2π

∫

d2k

(2π)2
e−iωt eik�r

(ω2 − k
2 + iε)1−α

. (18)

This integral has been calculated in Ref. [7] (see Ap-
pendix 1 therein), yielding

DF (t, r) = − Cα

(t2 − r2 − iǫ)1/2+α
, (19)

where

Cα =
22α−1/2

(2π)3/2
Γ(α+ 1/2)

Γ(1− α)
.

In order to probe the unitarity of the theories described
by Eq. (13), let us first consider the scalar field. Later
on we shall return to the vector field case.
Taking the amplitude corresponding to the operator

Eq. (2) evaluated between states |i〉 and |f〉, which is
written as 〈i|T |f〉 = (2π)3δ3(ki−kf )Dif and introducing
a complete set of intermediate states |x〉 on the right-
hand side (rhs), the above unitarity condition becomes
Ref. [2]

D∗
if −Dif = −i

∑

x

∫

dΦ (2π)3δ3(ki − kf ) (D
∗
ixDxf ),

(20)
where dΦ is the phase space factor, which is needed for
dimensional reasons and also to ensure that the sum over
the intermediate states corresponds to the identity. The
equation above is known as the generalized optical theo-
rem.
Now, for i → f , the amplitude Dii becomes the Fey-

man propagator,

Dii = DF (t− t′, r− r
′)

which is given by Eq. (19). Notice that, in the Heisenberg
picture DF (t− t′, r− r

′) = 〈r, t|r′, t′〉.
The unitarity condition, therefore, would lead to the

equation

D∗
F (t, r)−DF (t, r) =

−i
∫

dΦ (2π)3δ3(0)

∫

dtx
2π

∫

d2rx
(2π)2

D∗
F (tx, rx)DF (t− tx, r− rx). (21)

Our strategy to test unitarity of a given theory will be
to check whether the corresponding propagator satisfies
the optical theorem. For this purpose, we Fourier trans-
form the above equation to energy-momentum space,

D∗
F (ω,k)−DF (ω,k) = −iT γD∗

F (ω,k)DF (ω,k), (22)

where DF (ω,k) is promptly obtained from Eq. (18), it is
given by

DF (ω,k) =
1

(ω2 − k
2 + iε)1−α

. (23)

In the Eq. (22), we used the fact that the phase space
integral combined with δ3(0) yields T γ , where T is the
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characteristic time of the system and γ = −2(1−α) (see
App. A).
Defining χα = (ω2 − k

2 + iε)1−α, we can write the
equation above as

2 Im(χα)

χ∗
αχα

=
T −2(1−α)

χ∗
αχα

. (24)

For unitarity to be respected, we must have

2 Im(χα) = T −2(1−α). (25)

However, since the rhs is a constant, for the above con-
dition to be consistent, Im(χα) must also be a constant,
in the limit ε→ 0. In other words, in that limit the left-
hand side (lhs) can not be a function of λ = ω2 − k

2 for
Eq. (25) to be consistent.
In order to verify this condition, we introduce a po-

lar representation for χα, namely, χα = (ρ eiθ)1−α, with
ρ2(λ) = λ2+ε2 and θ(λ) = sin−1(ε/ρ). Then, we require
that

d

dλ
Im(χα) =

d

dλ
ρ sin[(1− α)θ] = 0. (26)

Calculating the derivative, we obtain

tan[θ(λ)(1 − α)] = tan[θ(λ)], (27)

which has an obvious solution α = 0. Indeed, it is clear
that for this value of α, Im(χ0) = ε and therefore is
independent of λ.
A less obvious solution is α = 1/2, which is valid be-

cause in this case Eq. (27) admits a solution θ(λ) = 2π−ε,
which is compatible with the definition of θ(λ). In this
case, we also find Im(χ1/2) = ε (see App. B).
We conclude that, for the theories whith α = 0 and α =

1/2, the two sides of Eq. (24) would coincide consistently
by identifying 2ε with T −2. For other values of α, Im(χα)
would depend on λ and, therefore, we would not be able
to find a consistent solution of Eq. (25) satisfying the
generalized optical theorem.
The demonstrations provided above were meant for the

scalar theories associated with Eq. (13). The correspond-
ing results for the vector propagator Eq. (16) then, follow
straightforwardly by making T −2(1−α)/4 → T ′−2(1−α)

and from the fact that the transverse projector has the
property: P 2 = P .
We conclude that out of the class of theories described

by Eq. (13), only the ones with α = 0 and α = 1/2,
namely QED3 and PQED are unitary.

IV. UNITARITY OF PQED IN THE RPA

APPROXIMATION

Next, we consider PQED, the case for which α = 1/2.
As we have seen, it describes the EM interaction of the

particles coupled to it. Having graphene in mind we de-
scribe the electrons as massless Dirac fermions experienc-
ing the EM interaction mediated by the gauge field Aµ.
The Lagrangian in this case reads [12]

L =
1

4
Fµν

[

4√
−�

]

Fµν + ψ̄ (i∂/+ e γµAµ) ψ, (28)

where e is the dimensionless coupling constant, ψ is the
Dirac field, and γµ are Dirac matrices which can be either
two or four dimensional, since we are in (2+1)D.
The corrections to the gauge-field propagator are ex-

pressed in terms of the the vacuum polarization Πµν(p).
The one-loop expression for this has been calculated in
Ref. [13] and is given by

Πµν(k) = −e
2
√
k2

16
Pµν(k) +

e2

2π

(

n+
1

2

)

ǫµναk
α, (29)

where n is an integer. The result above is for two dimen-
sional Dirac matrices.
According to Eq. (18), the free gauge field propagator

in momentum space reads

G0,µν(k) =
1

4

Pµν(k)√
k2

. (30)

We include the vacuum polarization corrections by us-
ing the random phase approximation (RPA), where the
corrected propagator is given by the geometrical series

Gµν = G0, µα

[

δα,ν +ΠαβG0, βν+

ΠαβG0, βσΠ
σγG0, γν + ...

]

. (31)

Because of the peculiar momentum dependence of the
vacuum polarization tensor, the corrected propagator has
basically the same momentum dependence as the free one

Gµν(k) =
1√

k2 + iǫ

(

A1Pµν(k) +A2
ǫµναk

α

√
k2

)

, (32)

where A1 and A2 are constants depending on the coeffi-
cients of the vacuum polarization tensor. Note that we
use the Feynman prescription as we did before. Unitar-
ity of the theory is guaranteed provided that the optical
theorem Eq. (20) is still respected.
The propagator above can be conveniently written as

Gµν(k) = Cµν(k)DF (k), (33)

where

Cµν(k) = A1Pµν(k) +A2
ǫµναk

α

√
k2

, (34)

with DF (k) given by the Eq. (18) for α = 1/2.
The optical theorem now reads

G∗
µν(t, r)−Gµν(t, r) =

−i
∫

dΦ (2π)3δ3(0)

∫

dtx
2π

∫

d2rx
(2π)2

G∗
µα(tx, rx)Gαν(t− tx, r− rx). (35)
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Next, we adopt the same strategy as for the non-
interacting case and perform a Fourier transform in both
sides of the above equation, again, considering that the
Fourier transform of a convolution is a product. We ob-
tain

G∗
µν(ω,k)−Gµν(ω,k) = −iT −1G∗

µα(ω,k)Gαν(ω,k).
(36)

The lhs of Eq. (36) is given by

Cµν(k)2i Im(χ1/2)

[(ω2 − k
2)2 + ǫ2]1/2

, (37)

whereas the rhs of Eq. (36) reads

−iT −1Cµα(k)Cαν (k)

[(ω2 − k
2)2 + ǫ2]1/2

, (38)

where

C2
µν(k) = (A2

1 −A2
2)Pµν(k)− 2A1A2

ǫµναk
α

√
k2

. (39)

We now consider Eq. (37) and Eq. (38). Since both are

proportional to the operators Pµν(k) and ǫµναk
α/

√
k2,

therefore, we have to compare the corresponding coef-
ficients of both terms. Using the result of App. B, we
conclude that the optical theorem will be obeyed and
consequently, unitarity preserved, provided we make the
choices

(2 ε)1/2 =
A2

1 −A2
2

2A1
T −1, (40)

in the Pµν(k) term and

(2 ε′)1/2 = A1T −1, (41)

in the ǫµναk
α/

√
k2 term.

This concludes our proof of the unitarity of PQED of
massless electrons in the RPA approximation.

V. BEYOND THE RPA APPROXIMATION

Within the RPA approximation, the one-loop expres-
sion for the vacuum polarization tensor, Eq. (29) is used
in the geometrical series that corrects the free propaga-
tor of the gauge field. This approach can be improved by
adding the two-loop correction for the vacuum polariza-
tion tensor, as calculated by Teber [6],

Π(2)
µν (k) = −

√
k2

16

(

92− 9π2

18π

)

αg Pµν , (42)

where αg ≈ 300/137 = 2.189 is the fine structure con-
stant of graphene. Considering that (92 − 9π2)/18π ≈
0.056, we see that the two-loop correction is sensible.
There is no correction to the Chern-Simon term due to
the Coleman-Hill theorem [14].

Observe that, remarkably, the two-loop correction has
precisely the same functional dependence as the one-loop
one. As a consequence, the only effect of the two-loop
correction to the vacuum polarization is to redefine the
constant A1 in Eq. (32). Therefore, it immediately fol-
lows that the optical theorem, and consequently, unitar-
ity are respected in the two-loop extension of the RPA
approximation.

VI. CONCLUSIONS

We have tested the unitarity of a class of field theo-
ries in 2+1D containing fractional powers (1− α) of the
d’Alembertian operator, which despite being nonlocal,
respect causality. QED3 and PQED are particular cases,
respectively, with α = 0 and α = 1/2.

Our strategy is to verify whether the propagator sat-
isfies the optical theorem. We first considered the free
propagator for generic α and showed that only for α = 0
and α = 1/2, namely, for QED3 and PQED, unitarity is
respected. Inspection of the propagators in Eqs. (19) and
(23) shows that one theory is dual to the other. Indeed,
for α = 0 the exponent in DF (ω,k) is unity, whereas the
one in DF (t, r) is 1/2. For α = 1/2, the same occurs, but
with k → r and ω → t.

We then considered the case of PQED coupled to mass-
less Dirac fermions, which is the model for graphene. We
have shown that the propagator corrected both within
the RPA approximation and in its two-loop extension
satisfy the optical theorem, hence unitarity is preserved
in both cases.

VII. ACKNOWLEDGMENTS

This work was supported in part by CNPq (Brazil),
CAPES (Brazil), FAPERJ (Brazil), The Netherlands Or-
ganization for Scientific Research (NWO) and by the
Brazilian government project Science Without Borders.
We are grateful to G.’t Hooft for interesting discussions.

VIII. APPENDIX A: THE PHASE SPACE

FACTOR

Here we are going to determine the phase space factor
[1]. Let us consider Eq. (21) and write

∫

dΦ (2π)3δ3(0) ≡ T γ , (43)

where T is the characteristic time scale of the system.
For dimensional reasons, we have γ + 3 = 2(α + 1/2)
and consequently γ = −2(1 − α). This justifies the γ-
dependence in Eq. (22).
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IX. APPENDIX B: THE Im(χα)

Let us show here that, for α = 0, 1/2, indeed, the ex-
pression of Im(χα) relevant for the optical theorem, is
given by ε, ε1/2, respectively, and therefore just depends
on ε.
Using χα ≡ (ω2 − k

2 + iε)1−α, we have, for α = 0,
χ0 = (ω2 − k

2 + iε) and evidently Im(χ0) = ε ∝ T −2.
For the case α = 1/2, notice that the condition for the

optical theorem to be satisfied is

2 Im(χ1/2)

[(ω2 − k
2)2 + ε2]1/2

=
KT −1

[(ω2 − k
2)2 + ε2]1/2

, (44)

for some dimensionless constant K. Squaring this equa-
tion and multiplying both the numerators by ε, we obtain
both sides proportional to δ(ω2−k

2). As a consequence,
we must equate the numerators at ω2 − k

2 = 0, namely,

2 Im(χ1/2)
∣

∣

∣

ω2=k2

= (2 ε)1/2 = KT −1, (45)

which completes the proof for α = 1/2.
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