22 research outputs found

    Expression of a methionine-rich storage albumin from the Brazil nut (Bertholletia excelsa H.B.K., Lecythidaceae) in transgenic bean plants (Phaseolus vulgaris L., Fabaceae)

    Get PDF
    Bean (Phaseolus vulgaris), an important component in the diet of people in developing countries, has low levels of the essential amino acid, methionine. We have attempted to correct this deficiency by introducing a transgene coding for a methionine-rich storage albumin from the Brazil nut via biolistic methods. The transgene's coding sequence was driven by a doubled 35S CaMV promoter and AMV enhancer sequences. The transgene was stable and correctly expressed in homozygous R2 to R5 seeds. In two of the five transgenic lines the methionine content was significantly increased (14 and 23%) over the values found in untransformed plants.O feijão (Phaseolus vulgaris L.) é um componente importante na dieta da população de países em desenvolvimento. Entretanto, possui um baixo nível de aminoácidos essenciais, como a metionina. Numa tentativa de corrigir esta deficiência, plantas transgênicas de feijão foram produzidas contendo o gene de uma proteína rica em metionina, a albumina 2S da castanha do Brasil. O gene desta albumina (be2s2), clonado sob o controle do promotor 35S dobrado do vírus do mosaico da couve-flor e uma seqüência "enhancer" do vírus do mosaico da alfafa, foi introduzido em feijão através do processo biobalístico. O gene foi expressado corretamente em sementes homozigotas desde a segunda até a quinta geração. Em duas linhagens transgênicas o nível de metionina foi incrementado em 14 e 23% nas sementes

    Expression of a methionine-rich storage albumin from the Brazil nut (Bertholletia excelsa H.B.K., Lecythidaceae) in transgenic bean plants (Phaseolus vulgaris L., Fabaceae)

    No full text
    Bean (Phaseolus vulgaris), an important component in the diet of people in developing countries, has low levels of the essential amino acid, methionine. We have attempted to correct this deficiency by introducing a transgene coding for a methionine-rich storage albumin from the Brazil nut via biolistic methods. The transgene's coding sequence was driven by a doubled 35S CaMV promoter and AMV enhancer sequences. The transgene was stable and correctly expressed in homozygous R2 to R5 seeds. In two of the five transgenic lines the methionine content was significantly increased (14 and 23%) over the values found in untransformed plants

    Geomorphological change detection using object-based feature extraction from multi-temporal LIDAR data

    No full text
    Multi-temporal LiDAR DTMs are used for the development and testing of a method for geomorphological change analysis in western Austria. Our test area is located on a mountain slope in the Gargellen Valley in western Austria. Six geomorphological features were mapped by using stratified Object-Based Image Analysis (OBIA) and segmentation optimization using 1m LiDAR DTMs of 2002 and 2005. Based on the 2002 data, the scale parameter for each geomorphological feature was optimized by comparing manually digitized training samples with automatically recognized image objects. Classification rule sets were developed to extract the feature types of interest. The segmentation and classification settings were then applied to both LiDAR DTMs which allowed the detection of geomorphological change between 2002 and 2005. FROM-TO changes of geomorphological categories were calculated and linked to volumetric changes which were derived from the subtracted DTMs. Enlargement of mass movement areas at the cost of glacial eroded bedrock was detected, although most changes occurred within mass movement categories and channel incisions, as the result of material removal and/or deposition. The proposed method seems applicable for geomorphological change detection in mountain areas. In order to improve change detection results, processing errors and noise that negatively influence the segmentation accuracy need to be reduced. Despite these concerns, we conclude that stratified OBIA applied to multi-temporal LiDAR datasets is a promising tool for of geomorphological change detection

    In Vivo Assessment Of The Cytotoxic, Genotoxic And Antigenotoxic Potential Of Maná-cubiu (solanum Sessiliflorum Dunal) Fruit

    No full text
    Solanum sessiliflorum Dunal is a native shrub often found in the Amazon Forest. Its fruits, known as maná-cubiu, possess an unusual flavor and are consumed in salads and juices, mainly by the local community of Northern Brazil. Because these fruits are used in traditional medicine as hypoglycemic and hypocholesterolemic agents, it is important to establish whether the consumption of maná-cubiu is safe using in vivo genotoxicity tests. Here, we investigated the genotoxic and antigenotoxic potential of maná-cubiu for doxorubicin (DXR)-induced DNA damage using the micronucleus test and the comet assay in Wistar rats. Moreover, oxidative stress parameters were determined in the heart and liver of the animals by measuring the thiobarbituric acid reactive substances (TBARS), a biomarker of lipid peroxidation, and reduced glutathione (GSH) content. The relative expression of Ptgs2 mRNA in the livers of the animals was also determined. The tests were performed with maná-cubiu pulp (125, 250, 375 or 500. mg/kg body weight - b.w.) by gavage for 14. days, followed by intraperitoneal injection of saline or DXR (16. mg/kg b.w.) immediately after the last gavage, which occurred 24. h before euthanasia. The results showed that maná-cubiu at all tested doses had no cytotoxic effects on bone marrow cells and was not genotoxic to heart or liver cells. In addition, maná-cubiu treatments decreased DXR-induced DNA damage according to the comet assay in heart and liver cells. Reductions in micronucleus frequency in peripheral blood cells occurred at 125, 250 and 375. mg/kg b.w. doses of maná-cubiu, and the TBARS content induced by DXR was also reduced by maná-cubiu. Furthermore, maná-cubiu did not modulate the transcription of the Ptgs2 gene. In conclusion, maná-cubiu pulp fruit was not cytotoxic or genotoxic in Wistar rats, suggesting its safety for human consumption, at least considering genotoxic effects. The antioxidant capacity of maná-cubiu pulp fruit may contribute to the antigenotoxic effects of this fruit at the doses used in this study. © 2014 Elsevier Ltd.62121127Aissa, A.F., Bianchi, M.L.P., Ribeiro, J.C., Hernandes, L.C., de Faria, A.F., Mercadante, A.Z., Comparative study of beta-carotene and microencapsulated beta-carotene: Evaluation of their genotoxic and antigenotoxic effects (2012) Food and Chemical Toxicology, 50 (5), pp. 1418-1424Almeida, M.R., Aissa, A.F., Gomes, T.D.U.H., Darin, J.D.C., Chiste, R.C., Mercadante, A.Z., In vivo genotoxicity and oxidative stress evaluation of an ethanolic extract from piquia (Caryocar villosum) pulp (2013) Journal of Medicinal Food, 16 (3), pp. 268-271Boeing, H., Bechthold, A., Bub, A., Ellinger, S., Haller, D., Kroke, A., Critical review: Vegetables and fruit in the prevention of chronic diseases (2012) European Journal of Nutrition, 51 (6), pp. 637-663Bowen, D.E., Whitwell, J.H., Lillford, L., Henderson, D., Kidd, D., Mc Garry, S., Evaluation of a multi-endpoint assay in rats, combining the bone-marrow micronucleus test, the Comet assay and the flow-cytometric peripheral blood micronucleus test (2011) Mutation Research, 722 (1), pp. 7-19Buege, J.A., Aust, S.D., Microsomal lipid peroxidation (1978) Methods in Enzymology, 52, pp. 302-310Carvalho, C., Santos, R.X., Cardoso, S., Correia, S., Oliveira, P.J., Santos, M.S., Doxorubicin: The good, the bad and the ugly effect (2009) Current Medicinal Chemistry, 16 (25), pp. 3267-3285Chang, C.V., Felicio, A.C., Reis, J.E., Guerra Mde, O., Peters, V.M., Fetal toxicity of Solanum lycocarpum (Solanaceae) in rats (2002) Journal of Ethnopharmacology, 81 (2), pp. 265-269de Angelis Pereira, M.C., Carvalho, J.C., Lima, L.M., Caputo, L.R., Ferreira, L.R., Fiorini, J.E., Toxicity of a subchronic treatment with hydroalcoholic crude extract from Solanum grandiflorum (Ruiz et Pav) in rats (2003) Journal of Ethnopharmacology, 89 (1), pp. 97-99Doroshow, J.H., Davies, K.J.A., Redox cycling of anthracyclines by cardiac mitochondria. 2. Formation of superoxide anion, hydrogen-peroxide, and hydroxyl radical (1986) Journal of Biological Chemistry, 261 (7), pp. 3068-3074Fang, Y.Z., Yang, S., Wu, G., Free radicals, antioxidants, and nutrition (2002) Nutrition, 18 (10), pp. 872-879Felzenszwalb, I., da Costa Marques, M.R., Mazzei, J.L., Aiub, C.A., Toxicological evaluation of Euterpe edulis: A potential superfruit to be considered (2013) Food and Chemical Toxicology, 58, pp. 536-544Fenech, M., Micronutrients and genomic stability: A new paradigm for recommended dietary allowances (RDAs) (2002) Food and Chemical Toxicology, 40 (8), pp. 1113-1117Fraga, C.G., Relevance, essentiality and toxicity of trace elements in human health (2005) Molecular Aspects of Medicine, 26 (4-5), pp. 235-244Gilleron, M., Marechal, X., Montaigne, D., Franczak, J., Neviere, R., Lancel, S., NADPH oxidases participate to doxorubicin-induced cardiac myocyte apoptosis (2009) Biochemical and Biophysical Research Communications, 388 (4), pp. 727-731Granados-Principal, S., Quiles, J.L., Ramirez-Tortosa, C.L., Sanchez-Rovira, P., Ramirez-Tortosa, M.C., New advances in molecular mechanisms and the prevention of adriamycin toxicity by antioxidant nutrients (2010) Food and Chemical Toxicology, 48 (6), pp. 1425-1438Hartree, E.F., Determination of protein: A modification of the Lowry method that gives a linear photometric response (1972) Analytical Biochemistry, 48 (2), pp. 422-427Hayashi, M., Morita, T., Kodama, Y., Sofuni, T., Ishidate, M., The micronucleus assay with mouse peripheral-blood reticulocytes using acridine orange-coated slides (1990) Mutation Research, 245 (4), pp. 245-249Holden, H.E., Majeska, J.B., Studwell, D., A direct comparison of mouse and rat bone marrow and blood as target tissues in the micronucleus assay (1997) Mutation Research-Genetic Toxicology and Environmental Mutagenesis, 391 (1-2), pp. 87-89Johanningsmeier, S.D., Harris, G.K., Pomegranate as a functional food and nutraceutical source (2011) Annual Review of Food Science and Technology, 2 (2), pp. 181-201Kumar, M., Kumar, S., Kaur, S., Role of ROS and COX-2/iNOS inhibition in cancer chemoprevention: A review (2012) Phytochemistry Reviews, 11 (2-3), pp. 309-337Liu, R.H., Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals (2003) The American Journal of Clinical Nutrition, 78 (3 SUPPL.), pp. 517S-520SLiu, R.H., Dietary bioactive compounds and their health implications (2013) Journal of Food Science, 78, pp. A18-A25Macgregor, J.T., Heddle, J.A., Hite, M., Margolin, B.H., Ramel, C., Salamone, M.F., Guidelines for the conduct of micronucleus assays in mammalian bone-marrow erythrocytes (1987) Mutation Research, 189 (2), pp. 103-112Marin, A.M.F., Siqueira, E.M.A., Arruda, S.F., Minerals, phytic acid and tannin contents of 18 fruits from the Brazilian savanna (2009) International Journal of Food Sciences and Nutrition, 60, pp. 177-187Marx, F., Andrade, E.H.A., Maia, J.G., Chemical composition of the fruit of Solanum sessiliflorum (1998) Zeitschrift für Lebensmittel-Untersuchung und -Forschung, 206 (5), pp. 364-366Nardi, E.P., Evangelista, F.S., Tormen, L., SaintPierre, T.D., Curtius, A.J., de Souza, S.S., The use of inductively coupled plasma mass spectrometry (ICP-MS) for the determination of toxic and essential elements in different types of food samples (2009) Food Chemistry, 112 (3), pp. 727-732Pardo, M.A., Efecto de Solanum sessilif lorum Dunal sobre el metabolismo lipidico y de la glucosa (2004) Ciencia e Investigación, 7, pp. 43-48Pfaffl, M.W., A new mathematical model for relative quantification in real-time RT-PCR (2001) Nucleic Acids Research, 29 (9)Rietjens, I.M.C.M., Slob, W., Galli, C., Silano, V., Risk assessment of botanicals and botanical preparations intended for use in food and food supplements: Emerging issues (2008) Toxicology Letters, 180 (2), pp. 131-136Rigano, M.M., De Guzman, G., Walmsley, A.M., Frusciante, L., Barone, A., Production of pharmaceutical proteins in Solanaceae food crops (2013) International Journal of Molecular Sciences, 14 (2), pp. 2753-2773Rodrigues, E., Mariutti, L.R., Mercadante, A.Z., Carotenoids and phenolic compounds from Solanum sessiliflorum, an unexploited Amazonian fruit, and their scavenging capacities against reactive oxygen and nitrogen species (2013) Journal of Agricultural and Food Chemistry, 61 (12), pp. 3022-3029Rothfuss, A., Honma, M., Czich, A., Aardema, M.J., Burlinson, B., Galloway, S., Improvement of in vivo genotoxicity assessment: Combination of acute tests and integration into standard toxicity testing (2011) Mutation Research, 723 (2), pp. 108-120Salick, J., Cocona (Solanum sessiliflorum) production and breeding potentials of the peach tomato (1989) New crops for food and industry, pp. 257-264. , Chapman and Hall, London, G.E. Wickens, N. Haq, P. Day (Eds.)Sanchez-Lamar, A., Fonseca, G., Fuentes, J.L., Cozzi, R., Cundari, E., Fiore, M., Assessment of the genotoxic risk of Punica granatum L. (Punicaceae) whole fruit extracts (2008) Journal of Ethnopharmacology, 115 (3), pp. 416-422Sedlak, J., Lindsay, R.H., Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent (1968) Analytical Biochemistry, 25 (1), pp. 192-205Simunek, T., Sterba, M., Popelova, O., Adamcova, M., Hrdina, R., Gersl, V., Anthracycline-induced cardiotoxicity: Overview of studies examining the roles of oxidative stress and free cellular iron (2009) Pharmacological Reports, 61 (1), pp. 154-171Singh, N.P., Mccoy, M.T., Tice, R.R., Schneider, E.L., A simple technique for quantitation of low-levels of DNA damage in individual cells (1988) Experimental Cell Research, 175 (1), pp. 184-191Tavares, D.C., Munari, C.C., Araujo, M.G., Beltrame, M.C., Furtado, M.A., Goncalves, C.C., Antimutagenic potential of Solanum lycocarpum against induction of chromosomal aberrations in V79 cells and micronuclei in mice by doxorubicin (2011) Planta Medica, 77 (13), pp. 1489-1494Tice, R.R., Agurell, E., Anderson, D., Burlinson, B., Hartmann, A., Kobayashi, H., Single cell gel/comet assay: Guidelines for in vitro and in vivo genetic toxicology testing (2000) Environmental and Molecular Mutagenesis, 35 (3), pp. 206-221Udani, J.K., Singh, B.B., Singh, V.J., Barrett, M.L., Effects of Acai (Euterpe oleracea Mart.) berry preparation on metabolic parameters in a healthy overweight population: A pilot study (2011) Nutrition Journal, 10, p. 45Vieira, P.M., Santos, S.C., Chen-Chen, L., Assessment of mutagenicity and cytotoxicity of Solanum paniculatum L. extracts using in vivo micronucleus test in mice (2010) Brazilian Journal of Biology, 70 (3), pp. 601-606Waters, M.D., Brady, A.L., Stack, H.F., Brockman, H.E., Antimutagenicity profiles for some model compounds (1990) Mutation Research, 238 (1), pp. 57-85Williams, C.S., Mann, M., DuBois, R.N., The role of cyclooxygenases in inflammation, cancer, and development (1999) Oncogene, 18 (55), pp. 7908-7916Wolfsegger, M.J., Jaki, T., Dietrich, B., Kunzler, J.A., Barker, K., A note on statistical analysis of organ weights in non-clinical toxicological studies (2009) Toxicology and Applied Pharmacology, 240 (1), pp. 117-12

    Evaluation Of The Antihypertensive Properties Of Yellow Passion Fruit Pulp (passiflora Edulis Sims F. Flavicarpa Deg.) In Spontaneously Hypertensive Rats

    No full text
    Various species of the genus Passiflora have been extensively used in traditional medicine as sedatives, anxiolytics, diuretics and analgesics. In the present study, after the identification and quantification of phytochemical compounds from yellow passion fruit pulp by liquid chromatography-photodiode array-mass spectrometry (HPLC-PDA-MS/MS), its antihypertensive effect was investigated on spontaneously hypertensive rats. Additionally, the renal function, evaluated by kidney/body weight, serum creatinine, proteinuria, urinary flow, reduced glutathione (GSH) levels and thiobarbituric acid-reactive substances (TBARS) and mutagenicity in bone marrow cells were assessed to evaluate the safety of passion fruit consumption. Yellow passion fruit pulp (5, 6 or 8 g/kg b.w.) was administered by gavage once a day for 5 consecutive days. HLPC-PDA-MS/MS analysis revealed that yellow passion fruit pulp contains phenolic compounds, ascorbic acid, carotenoids and flavonoids. The highest dose of passion fruit pulp significantly reduced the systolic blood pressure, increased the GSH levels and decreased TBARS. There were no changes in renal function parameters or the frequency of micronuclei in bone marrow cells. In conclusion, the antihypertensive effect of yellow passion fruit pulp, at least in part, might be due to the enhancement of the antioxidant status. The exact mechanisms responsible by this effect need further investigation. Copyright © 2013 John Wiley & Sons, Ltd.2812832Appel, K., Rose, T., Fiebich, B., Kammler, T., Hoffmann, C., Weiss, G., Modulation of the γ-aminobutyric acid (GABA) system by Passiflora incarnata L (2011) Phytother. Res., 25, pp. 838-843Biswas, S.K., De Faria, J.B.L., Which comes first: Renal inflammation or oxidative stress in spontaneously hypertensive rats? (2007) Free Radic. Res., 41, pp. 216-224Boeira, J.M., Fenner, R., Betti, A.H., Toxicity and genotoxicity evaluation of Passiflora alata Curtis (Passifloraceae) (2010) J. Ethnopharmacol., 128, pp. 526-532Bradford, M.M., A rapid sensitive method for the quantitation of microgram quantities on protein utilizing the principle or protein-dye binding (1976) Eur. J. Anaesthesiol., 25, pp. 248-256Chen, D., Coffman, T.M., The kidney and hypertension: Lessons from mouse models (2012) Can. J. Cardiol., 28, pp. 305-310De Rosso, V.V., Mercadante, A.Z., The high ascorbic acid content is the main cause of the low stability of anthocyanin extracts from acerola (2007) Food Chem., 103, pp. 935-943De Rosso, V.V., Mercadante, A.Z., Identification and quantification of carotenoids, by HPLC-PDA-MS/MS, from amazonian fruits (2007) J. Agric. Food Chem., 55, pp. 5062-5072Dhawan, K., Dhawan, S., Sharma, A., Passiflora: A review update (2004) J. Ethnopharmacol., 94, pp. 1-23Dornas, W.C., Silva, M.E., Animal models for the study of arterial hypertension (2011) J. Biosci., 36, pp. 731-737Duarte, J., Perez-Vizcaino, F., Zarzuelo, A., Jimenez, J., Tamargo, J., Vasodilator effects of quercetin in isolated rat vascular smooth muscle (1993) Eur. J. Pharmacol., 239, pp. 1-7Duarte, J., Perez-Palencia, R., Vargas, F., Antihypertensive effects of the flavonoid quercetin in spontaneously hypertensive rats (2001) Br. J. Pharmacol., 133, pp. 117-124Evangelista, C.M., Antunes, L.M., Francescato, H.D., Bianchi, M.L., Effects of the olive, extra virgin olive and canola oils on cisplatin-induced clastogenesis in Wistar rats (2004) Food Chem. Toxicol., 42, pp. 1291-1297Harrison, D.G., Gongora, M.C., Oxidative stress and hypertension (2009) Med. Clin. North Am., 93, pp. 621-635Hartree, E.F., Determination of protein: A modification of the lowry method that gives a linear photometric response (1972) Anal. Biochem., 48, pp. 422-427Hayashi, M., MacGregor, J.T., Gatehouse, D.G., In vivo rodent erythrocyte micronucleus assay. II. Some aspects of protocol design including repeated treatments, integration with toxicity testing, and automated scoring (2000) Environ. Mol. Mutagen., 35, pp. 234-252Houston, M.C., The role of cellular micronutrient analysis, nutraceuticals, vitamins, antioxidants and minerals in the prevention and treatment of hypertension and cardiovascular disease (2010) Ther. Adv. Cardiovasc. Dis., 4, pp. 165-183Ichimura, T., Yamanaka, A., Ichiba, T., Antihypertensive effect of an extract of Passiflora edulis rind in spontaneously hypertensive rats (2006) Biosci. Biotechnol. Biochem., 70, pp. 718-721Kizhakekuttu, T.J., Widlansky, M.E., Natural antioxidants and hypertension: Promise and challenges (2010) Cardiovasc. Ther., 28, pp. e20-e32MacGregor, J.T., Heddle, J.A., Hite, M., Guidelines for the conduct of micronucleus assays in mammalian bone-marrow erythrocytes (1987) Mutat. Res., 189, pp. 103-112Mercadante, A.Z., Britton, G., Rodriguez-Amaya, D.B., Carotenoids from yellow passion fruit (Passiflora edulis) (1998) J. Agric. Food Chem., 46, pp. 4102-4106Montezano, A.C., Touyz, R.M., Molecular mechanisms of hypertension-reactive oxygen species and antioxidants: A basic science update for the clinician (2012) Can. J. Cardiol., 28, pp. 288-295Ngan, A., Conduit, R., A double-blind, placebo-controlled investigation of the effects of Passiflora incarnata (passionflower) herbal tea on subjective sleep quality (2011) Phytother. Res., 25, pp. 1153-1159Palm, F., Nordquist, L., Renal oxidative stress, oxygenation, and hypertension (2011) Am. J. Physiol. Regul. Integr. Comp. Physiol., 301, pp. R1229-R1241Reginatto, F.H., De-Paris, F., Petry, R.D., Evaluation of anxiolytic activity of spray dried powders of two South Brazilian Passiflora species (2006) Phytother. Res., 20, pp. 348-351Rodrigo, R., Gil, D., Miranda-Merchak, A., Kalantzidis, G., Antihypertensive role of polyphenols (2012) Adv. Clin. Chem., 58, pp. 225-254Sdlak, J., Lindsay, R.H., Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent (1968) Anal. Biochem., 24, pp. 192-205Singleton, V.L., Rossi, Jr.J.A., Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents (1965) Am. J. Enol. Vitic., 16, pp. 144-158De Souza, M.D.S., Barbalho, S.M., Damasceno, D.C., Effects of Passiflora edulis (Yellow Passion) on Serum Lipids and Oxidative Stress Status of Wistar Rats (2012) J. Med. Food, 15, pp. 78-82Uchiyama, M., Mihara, M., Determination of malonaldehyde precursor in tissues by thiobarbituric acid test (1978) Anal. Biochem., 86, pp. 271-278Vasdev, S., Ford, C.A., Parai, S., Longerich, L., Gadag, V., Dietary vitamin C supplementation lowers blood pressure in spontaneously hypertensive rats (2001) Mol. Cell. Biochem., 218, pp. 97-103Vianna, L.M., Paiva, A.C.M., Paiva, T.B., Treatment with vitamin-d3 reduces blood-pressure of spontaneously hypertensive rats (1992) Genetic Hypertension, 218, pp. 589-591Wolfsegger, M.J., Jaki, T., Dietrich, B., Kunzler, J.A., Barker, K., A note on statistical analysis of organ weights in non-clinical toxicological studies (2009) Toxicol. Appl. Pharmacol., 240, pp. 117-122Yeh, C.-T., Huang, W.-H., Yen, G.-C., Antihypertensive effects of Hsian-tsao and its active compound in spontaneously hypertensive rats (2009) J. Nutr. Biochem., 20, pp. 866-875Zhishen, J., Mengcheng, T., Jianming, W., The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals (1999) Food Chem., 64, pp. 555-559Zibadi, S., Farid, R., Moriguchi, S., Oral administration of purple passion fruit peel extract attenuates blood pressure in female spontaneously hypertensive rats and humans (2007) Nutr. Res., 27, pp. 408-41

    Isolation of fatty acids and identification by spectroscopic and related techniques

    No full text

    Chromatographic analysis of molecular species of intact phospholipids and glycolipids

    No full text
    corecore