11,652 research outputs found

    Local quantum ergodic conjecture

    Full text link
    The Quantum Ergodic Conjecture equates the Wigner function for a typical eigenstate of a classically chaotic Hamiltonian with a delta-function on the energy shell. This ensures the evaluation of classical ergodic expectations of simple observables, in agreement with Shnirelman's theorem, but this putative Wigner function violates several important requirements. Consequently, we transfer the conjecture to the Fourier transform of the Wigner function, that is, the chord function. We show that all the relevant consequences of the usual conjecture require only information contained within a small (Planck) volume around the origin of the phase space of chords: translations in ordinary phase space. Loci of complete orthogonality between a given eigenstate and its nearby translation are quite elusive for the Wigner function, but our local conjecture stipulates that their pattern should be universal for ergodic eigenstates of the same Hamiltonian lying within a classically narrow energy range. Our findings are supported by numerical evidence in a Hamiltonian exhibiting soft chaos. Heavily scarred eigenstates are remarkable counter-examples of the ergodic universal pattern.Comment: 4 figure

    Decoherence of Semiclassical Wigner Functions

    Get PDF
    The Lindblad equation governs general markovian evolution of the density operator in an open quantum system. An expression for the rate of change of the Wigner function as a sum of integrals is one of the forms of the Weyl representation for this equation. The semiclassical description of the Wigner function in terms of chords, each with its classically defined amplitude and phase, is thus inserted in the integrals, which leads to an explicit differential equation for the Wigner function. All the Lindblad operators are assumed to be represented by smooth phase space functions corresponding to classical variables. In the case that these are real, representing hermitian operators, the semiclassical Lindblad equation can be integrated. There results a simple extension of the unitary evolution of the semiclassical Wigner function, which does not affect the phase of each chord contribution, while dampening its amplitude. This decreases exponentially, as governed by the time integral of the square difference of the Lindblad functions along the classical trajectories of both tips of each chord. The decay of the amplitudes is shown to imply diffusion in energy for initial states that are nearly pure. Projecting the Wigner function onto an orthogonal position or momentum basis, the dampening of long chords emerges as the exponential decay of off-diagonal elements of the density matrix.Comment: 23 pg, 2 fi

    Semiclassical Evolution of Dissipative Markovian Systems

    Full text link
    A semiclassical approximation for an evolving density operator, driven by a "closed" hamiltonian operator and "open" markovian Lindblad operators, is obtained. The theory is based on the chord function, i.e. the Fourier transform of the Wigner function. It reduces to an exact solution of the Lindblad master equation if the hamiltonian operator is a quadratic function and the Lindblad operators are linear functions of positions and momenta. Initially, the semiclassical formulae for the case of hermitian Lindblad operators are reinterpreted in terms of a (real) double phase space, generated by an appropriate classical double Hamiltonian. An extra "open" term is added to the double Hamiltonian by the non-hermitian part of the Lindblad operators in the general case of dissipative markovian evolution. The particular case of generic hamiltonian operators, but linear dissipative Lindblad operators, is studied in more detail. A Liouville-type equivariance still holds for the corresponding classical evolution in double phase, but the centre subspace, which supports the Wigner function, is compressed, along with expansion of its conjugate subspace, which supports the chord function. Decoherence narrows the relevant region of double phase space to the neighborhood of a caustic for both the Wigner function and the chord function. This difficulty is avoided by a propagator in a mixed representation, so that a further "small-chord" approximation leads to a simple generalization of the quadratic theory for evolving Wigner functions.Comment: 33 pages - accepted to J. Phys.

    Accuracy of a teleported trapped field state inside a single bimodal cavity

    Full text link
    We propose a simplified scheme to teleport a superposition of coherent states from one mode to another of the same bimodal lossy cavity. Based on current experimental capabilities, we present a calculation of the fidelity that can be achieved, demonstrating accurate teleportation if the mean photon number of each mode is at most 1.5. Our scheme applies as well for teleportation of coherent states from one mode of a cavity to another mode of a second cavity, both cavities embedded in a common reservoir.Comment: 4 pages, 2 figures, in appreciation for publication in Physical Review

    Duality between quantum and classical dynamics for integrable billiards

    Full text link
    We establish a duality between the quantum wave vector spectrum and the eigenmodes of the classical Liouvillian dynamics for integrable billiards. Signatures of the classical eigenmodes appear as peaks in the correlation function of the quantum wave vector spectrum. A semiclassical derivation and numerical calculations are presented in support of the results. These classical eigenmodes can be observed in physical experiments through the auto-correlation of the transmission coefficient of waves in quantum billiards. Exact classical trace formulas of the resolvent are derived for the rectangle, equilateral triangle, and circle billiards. We also establish a correspondence between the classical periodic orbit length spectrum and the quantum spectrum for integrable polygonal billiards.Comment: 12 pages, 4 figure

    Growth laws and self-similar growth regimes of coarsening two-dimensional foams: Transition from dry to wet limits

    Full text link
    We study the topology and geometry of two dimensional coarsening foams with arbitrary liquid fraction. To interpolate between the dry limit described by von Neumann's law, and the wet limit described by Marqusee equation, the relevant bubble characteristics are the Plateau border radius and a new variable, the effective number of sides. We propose an equation for the individual bubble growth rate as the weighted sum of the growth through bubble-bubble interfaces and through bubble-Plateau borders interfaces. The resulting prediction is successfully tested, without adjustable parameter, using extensive bidimensional Potts model simulations. Simulations also show that a selfsimilar growth regime is observed at any liquid fraction and determine how the average size growth exponent, side number distribution and relative size distribution interpolate between the extreme limits. Applications include concentrated emulsions, grains in polycrystals and other domains with coarsening driven by curvature

    The XY Spin-Glass with Slow Dynamic Couplings

    Full text link
    We investigate an XY spin-glass model in which both spins and couplings evolve in time: the spins change rapidly according to Glauber-type rules, whereas the couplings evolve slowly with a dynamics involving spin correlations and Gaussian disorder. For large times the model can be solved using replica theory. In contrast to the XY-model with static disordered couplings, solving the present model requires two levels of replicas, one for the spins and one for the couplings. Relevant order parameters are defined and a phase diagram is obtained upon making the replica-symmetric Ansatz. The system exhibits two different spin-glass phases, with distinct de Almeida-Thouless lines, marking continuous replica-symmetry breaking: one describing freezing of the spins only, and one describing freezing of both spins and couplings.Comment: 7 pages, Latex, 3 eps figure

    InfluĂȘncia da incidĂȘncia de luz na germinação e vigor de sementes de nĂł-de-cachorro.

    Get PDF
    bitstream/item/55714/1/CT99.pd
    • 

    corecore