12,901 research outputs found

    Quantum critical point in the spin glass-antiferromagnetism competition in Kondo-lattice systems

    Full text link
    A theory is proposed to describe the competition among antiferromagnetism (AF), spin glass (SG) and Kondo effect. The model describes two Kondo sublattices with an intrasite Kondo interaction strength JKJ_{K} and an interlattice quantum Ising interaction in the presence of a transverse field Γ\Gamma. The interlattice coupling is a random Gaussian distributed variable (with average 2J0/N-2J_0/N and variance 32J2/N32 J^{2}/N) while the Γ\Gamma field is introduced as a quantum mechanism to produce spin flipping. The path integral formalism is used to study this fermionic problem where the spin operators are represented by bilinear combinations of Grassmann fields. The disorder is treated within the framework of the replica trick. The free energy and the order parameters of the problem are obtained by using the static ansatz and by choosing both J0/JJ_0/J and Γ/J(Jk/J)2\Gamma/J \approx (J_k/J)^2 to allow, as previously, a better comparison with the experimental findings. The results indicate the presence of a SG solution at low JK/JJ_K/J and for temperature T<TfT<T_{f} (TfT_{f} is the freezing temperature). When JK/JJ_K/J is increased, a mixed phase AF+SG appears, then an AF solution and finally a Kondo state is obtained for high values of JK/JJ_{K}/J. Moreover, the behaviors of the freezing and Neel temperatures are also affected by the relationship between JKJ_{K} and the transverse field Γ\Gamma. The first one presents a slight decrease while the second one decreases towards a Quantum Critical Point (QCP). The obtained phase diagram has the same sequence as the experimental one for Ce2Au1xCoxSi3Ce_{2}Au_{1-x}Co_{x}Si_{3}, if JKJ_{K} is assumed to increase with xx, and in addition, it also shows a qualitative agreement concerning the behavior of the freezing and the Neel temperatures.Comment: 11 pages, 3 figures, accepted for publication in J. Phys.

    Critical Lines and Massive Phases in Quantum Spin Ladders with Dimerization

    Get PDF
    We determine the existence of critical lines in dimerized quantum spin ladders in their phase diagram of coupling constants using the finite-size DMRG algorithm. We consider both staggered and columnar dimerization patterns, and antiferromagnetic and ferromagnetic inter-leg couplings. The existence of critical phases depends on the precise combination of these patterns. The nature of the massive phases separating the critical lines are characterized with generalized string order parameters that determine their valence bond solid (VBS) content.Comment: 9 pages 10 figure

    Nanometric pitch in modulated structures of twist-bend nematic liquid crystals

    Full text link
    The extended Frank elastic energy density is used to investigate the existence of a stable periodically modulate structure that appears as a ground state exhibiting a twist-bend molecular arrangement. For an unbounded sample, we show that the twist-bend nematic phase NTBN_{TB} is characterized by a heliconical structure with a pitch in the nano-metric range, in agreement with experimental results. For a sample of finite thickness, we show that the wave vector of the stable periodic structure depends not only on the elastic parameters but also on the anchoring energy, easy axis direction, and the thickness of the sample.Comment: 11 page

    Nonadiabatic coherent evolution of two-level systems under spontaneous decay

    Full text link
    In this paper we extend current perspectives in engineering reservoirs by producing a time-dependent master equation leading to a nonstationary superposition equilibrium state that can be nonadiabatically controlled by the system-reservoir parameters. Working with an ion trapped inside a nonindeal cavity we first engineer effective Hamiltonians that couple the electronic states of the ion with the cavity mode. Subsequently, two classes of decoherence-free evolution of the superposition of the ground and decaying excited levels are achieved: those with time-dependent azimuthal or polar angle. As an application, we generalise the purpose of an earlier study [Phys. Rev. Lett. 96, 150403 (2006)], showing how to observe the geometric phases acquired by the protected nonstationary states even under a nonadiabatic evolution.Comment: 5 pages, no figure

    Sustainable design approaches towards green higher education campus

    Get PDF
    The primary goal of our work is to address the issues concerning the application of sustainability concepts in the Higher Education Campus of the Faculty of Architecture at Universidade de Lisboa. Sustainable actions and attitudes are part of the sustainable principles of the Sustainable Development Goals adopted in the 2030 Agenda by all United Nations member states. This exploratory research is based on a review of the international literature specialising in sustainability assessment in Higher Education Institutions. A qualitative research approach was applied, using a questionnaire adapted from the European University Association in 2021, as a research instrument to know the perception and opinion of the Faculty of Architecture (FA) academic community on some of the collective actions of greening. A qualitative interpretation and discussion of the obtained data were performed based on a survey conducted on a non-probabilistic sample selected from Campus users. With this investigation, we intend to know the challenges and initiatives practised on this Campus in defence of sustainability and contribute towards a changeover in the environmental, social, and economic awareness of the campus community.info:eu-repo/semantics/publishedVersio

    New skills for new designers: Fashion and textiles

    Get PDF
    This paper is the first part of a research work on new skills for designers and creative industries stakeholders, which aims to identify, organize and promote an updated professional mindset among FAUL students. Through the literature review and the implementation of specific questionnaires to the fashion students, teachers and practitioners, it was intended to draw a current view of the skill set needed to work in fashion design. This questionnaire was adapted from the one used in the O*NET Data Collection Program, considering the particular needs and representing the particular domain of education and training we are studying. The results of this study will serve as the structural basis for the design of new curricula that better respond to the needs of graduate students of the Fashion Design Course at the Faculty of Architecture of Lisbon - University of Lisbon, when they enter the job market.info:eu-repo/semantics/publishedVersio

    Control of Ralstonia solanacearum in tomato potting medium by the use of a solar collector.

    Get PDF
    A solar collector was used to disinfest potting medium inoculated with Ralstonia solanacearum. Tomato plantlets grown in the potting medium treated in the solar collector for one full day had no symptoms of bacterial wilt

    On the classical-quantum correspondence for the scattering dwell time

    Full text link
    Using results from the theory of dynamical systems, we derive a general expression for the classical average scattering dwell time, tau_av. Remarkably, tau_av depends only on a ratio of phase space volumes. We further show that, for a wide class of systems, the average classical dwell time is not in correspondence with the energy average of the quantum Wigner time delay.Comment: 5 pages, 1 figur

    Decoherence of Semiclassical Wigner Functions

    Get PDF
    The Lindblad equation governs general markovian evolution of the density operator in an open quantum system. An expression for the rate of change of the Wigner function as a sum of integrals is one of the forms of the Weyl representation for this equation. The semiclassical description of the Wigner function in terms of chords, each with its classically defined amplitude and phase, is thus inserted in the integrals, which leads to an explicit differential equation for the Wigner function. All the Lindblad operators are assumed to be represented by smooth phase space functions corresponding to classical variables. In the case that these are real, representing hermitian operators, the semiclassical Lindblad equation can be integrated. There results a simple extension of the unitary evolution of the semiclassical Wigner function, which does not affect the phase of each chord contribution, while dampening its amplitude. This decreases exponentially, as governed by the time integral of the square difference of the Lindblad functions along the classical trajectories of both tips of each chord. The decay of the amplitudes is shown to imply diffusion in energy for initial states that are nearly pure. Projecting the Wigner function onto an orthogonal position or momentum basis, the dampening of long chords emerges as the exponential decay of off-diagonal elements of the density matrix.Comment: 23 pg, 2 fi

    Semiclassical Evolution of Dissipative Markovian Systems

    Full text link
    A semiclassical approximation for an evolving density operator, driven by a "closed" hamiltonian operator and "open" markovian Lindblad operators, is obtained. The theory is based on the chord function, i.e. the Fourier transform of the Wigner function. It reduces to an exact solution of the Lindblad master equation if the hamiltonian operator is a quadratic function and the Lindblad operators are linear functions of positions and momenta. Initially, the semiclassical formulae for the case of hermitian Lindblad operators are reinterpreted in terms of a (real) double phase space, generated by an appropriate classical double Hamiltonian. An extra "open" term is added to the double Hamiltonian by the non-hermitian part of the Lindblad operators in the general case of dissipative markovian evolution. The particular case of generic hamiltonian operators, but linear dissipative Lindblad operators, is studied in more detail. A Liouville-type equivariance still holds for the corresponding classical evolution in double phase, but the centre subspace, which supports the Wigner function, is compressed, along with expansion of its conjugate subspace, which supports the chord function. Decoherence narrows the relevant region of double phase space to the neighborhood of a caustic for both the Wigner function and the chord function. This difficulty is avoided by a propagator in a mixed representation, so that a further "small-chord" approximation leads to a simple generalization of the quadratic theory for evolving Wigner functions.Comment: 33 pages - accepted to J. Phys.
    corecore