13 research outputs found

    Targeted management buffers negative impacts of climate change on the hihi, a threatened New Zealand passerine

    Get PDF
    In order to buffer the risks climate change poses to biodiversity, managers need to develop new strategies to cope with an increasingly dynamic environment. Supplementary Feeding (SF) is a commonly-used form of conservation management that may help buffer the impacts of climate change. However, the role of SF as an adaptation tool is yet to be fully understood. Here we used the program MARK to quantify the relationship between weather (average temperature and total precipitation) and vital rates (survival and recruitment) of an island bird population, the hihi Notiomystis cincta, for which long term demographic data are available under periods of little and ad libitum SF. We then used predictive population modelling to project this population’s dynamics under each management strategy and several climate change scenarios in accordance with the Intergovernmental Panel on Climate Change predictions. Our stochastic population projections revealed that ad libitum SF likely buffer the population against heavier rainfall and more stochastic precipitation patterns; no buffering effect on temperature was detected. While the current SF approach is unlikely to prevent local extinction of the population under increasing temperatures, SF still presents itself as a valuable climate change adaptation tool by delaying extinction. To the best of our knowledge, this is the first study to quantify the interaction between climate and SF intensity of a threatened population. We call for on-going critical evaluation of management measures, and suggest that novel adaptation solutions that combine current approaches are required for conserving species with limited opportunity for dispersal

    Extreme Conservation Leads to Recovery of the Virunga Mountain Gorillas

    Get PDF
    As wildlife populations are declining, conservationists are under increasing pressure to measure the effectiveness of different management strategies. Conventional conservation measures such as law enforcement and community development projects are typically designed to minimize negative human influences upon a species and its ecosystem. In contrast, we define “extreme” conservation as efforts targeted to deliberately increase positive human influences, including veterinary care and close monitoring of individual animals. Here we compare the impact of both conservation approaches upon the population growth rate of the critically endangered Virunga mountain gorillas (Gorilla beringei beringei), which increased by 50% since their nadir in 1981, from approximately 250 to nearly 400 gorillas. Using demographic data from 1967–2008, we show an annual decline of 0.7%±0.059% for unhabituated gorillas that received intensive levels of conventional conservation approaches, versus an increase 4.1%±0.088% for habituated gorillas that also received extreme conservation measures. Each group of habituated gorillas is now continuously guarded by a separate team of field staff during daylight hours and receives veterinary treatment for snares, respiratory disease, and other life-threatening conditions. These results suggest that conventional conservation efforts prevented a severe decline of the overall population, but additional extreme measures were needed to achieve positive growth. Demographic stochasticity and socioecological factors had minimal impact on variability in the growth rates. Veterinary interventions could account for up to 40% of the difference in growth rates between habituated versus unhabituated gorillas, with the remaining difference likely arising from greater protection against poachers. Thus, by increasing protection and facilitating veterinary treatment, the daily monitoring of each habituated group contributed to most of the difference in growth rates. Our results argue for wider consideration of extreme measures and offer a startling view of the enormous resources that may be needed to conserve some endangered species

    Marine mammals and Good Environmental Status: Science, Policy and Society; Challenges and Opportunities

    Get PDF
    The Marine Strategy Framework Directive has become the key instrument for marine conservation in European seas. We review its implementation, focusing on cetacean biodiversity, using the examples of Spain and the Regional Seas Convention, OSPAR. The MSFD has been widely criticised for legal vagueness, lack of coordination, uncertainty about funding, and poor governance; its future role within EU Integrated Maritime Policy remains unclear. Nevertheless, the first stages of the process have run broadly to schedule: current status, environmental objectives and indicators have been described and the design of monitoring programmes is in progress, drawing on experience with other environmental legislation. The MSFD is now entering its critical phase, with lack of funding for monitoring, limited scope for management interventions, and uncertainty about how conservation objectives will be reconciled with the needs of other marine and maritime sectors, being among the main concerns. Clarity in governance, about the roles of the EU, Member States, Regional Seas Conventions and stakeholders, is needed to ensure success. However, even if (as seems likely) good environmental status cannot be achieved by 2020, significant steps will have been taken to place environmental sustainability centre-stage in the development of Integrated Maritime Policy for EU seas.Postprin

    Does supplemental feeding affect the viability of translocated populations? The example of the hihi

    No full text
    Translocations are commonly used conservation actions that aim at establishing new, self-sustaining populations of threatened species. However, many translocated populations are not self-sustaining but managed through supplemental feeding from the onset. Often, the decision to start managing is ad hoc, but managers will eventually have to make decisions for the future, for example, stop intervening, continue as it is or change the quantity of food provided. Such a decision requires managers to quantify the importance of supplemental feeding in determining the performance and population dynamics of translocated populations, information that is rarely available in the published literature. Using the hihi as a case study, we examined the importance of supplemental feeding for the viability of a translocated population in New Zealand. We found that supplemental feeding positively affected the survival and abundance of translocated adult hihi but also found evidence of negative density dependence on recruitment. We present two stochastic population models that project the hihi population under different management scenarios, quantitatively assessing the impact supplemental feeding has had on the population. Our results illustrate how important long-term targeted monitoring is for robust decision making about adaptive management. © 2012 The Zoological Society of London

    To achieve big wins for terrestrial conservation, prioritize protection of ecoregions closest to meeting targets

    No full text
    Most of the terrestrial world is experiencing high rates of land conversion despite growth of the global protected area (PA) network. There is a need to assess whether the current global protection targets are achievable across all major ecosystem types and to identify those that need urgent protection. Using recent rates of habitat conversion and protection and the latest terrestrial ecoregion map, we show that if the same approach to PA establishment that has been undertaken over the past three decades continues, 558 of 748 ecoregions (ca. 75%) will not meet an aspirational 30% area protection target by 2030. A simple yet strategic acquisition plan that considers realistic futures around habitat loss and PA expansion could more than double the number of ecoregions adequately protected by 2030 given current funding constraints. These results highlight the importance of including explicit ecoregional representation targets within any new post-2020 global PA target

    Conservation prioritization can resolve the flagship species conundrum

    No full text
    Conservation strategies based on charismatic flagship species, such as tigers, lions, and elephants, successfully attract funding from individuals and corporate donors. However, critics of this species-focused approach argue it wastes resources and often does not benefit broader biodiversity. If true, then the best way of raising conservation funds excludes the best way of spending it. Here we show that this conundrum can be resolved, and that the flagship species approach does not impede cost-effective conservation. Through a tailored prioritization approach, we identify places containing flagship species while also maximizing global biodiversity representation (based on 19,616 terrestrial and freshwater species). We then compare these results to scenarios that only maximized biodiversity representation, and demonstrate that our flagship-based approach achieves 79−89% of our objective. This provides strong evidence that prudently selected flagships can both raise funds for conservation and help target where these resources are best spent to conserve biodiversity
    corecore