6,801 research outputs found

    Simulating forensic casework scenarios in experimental studies: The generation of footwear marks in blood

    Get PDF
    A study was designed to investigate the effects of external variables, including blood type, flooring surface, footwear tread depth and blood dryness, on the appearance of blood-based footwear marks, with particular reference to simulating a specific casework scenario. Results showed that footwear marks left in human blood tended to be of greater quality than those in equine blood, highlighting a potential issue in applying data generated with equine blood to human bloodstains in casework. Footwear tread effects were also dependent on blood type, but the type of flooring surface did not affect the appearance of the mark. Under some conditions, as the blood dried, the amount of detail retained from footwear contact decreased. These results provide the beginnings of an empirical evidence base to allow a more accurate interpretation of blood-based footwear marks in forensic casework. When applied to a disputed bloodstain in a specific case, these results also demonstrate the importance of such experiments in narrowing the range of explanations possible in the interpretation of forensic evidence

    Alpha-particle-induced complex chromosome exchanges transmitted through extra-thymic lymphopoiesis in vitro show evidence of emerging genomic instability

    Get PDF
    Human exposure to high-linear energy transfer α-particles includes environmental (e.g. radon gas and its decay progeny), medical (e.g. radiopharmaceuticals) and occupational (nuclear industry) sources. The associated health risks of α-particle exposure for lung cancer are well documented however the risk estimates for leukaemia remain uncertain. To further our understanding of α-particle effects in target cells for leukaemogenesis and also to seek general markers of individual exposure to α-particles, this study assessed the transmission of chromosomal damage initially-induced in human haemopoietic stem and progenitor cells after exposure to high-LET α-particles. Cells surviving exposure were differentiated into mature T-cells by extra-thymic T-cell differentiation in vitro. Multiplex fluorescence in situ hybridisation (M-FISH) analysis of naïve T-cell populations showed the occurrence of stable (clonal) complex chromosome aberrations consistent with those that are characteristically induced in spherical cells by the traversal of a single α-particle track. Additionally, complex chromosome exchanges were observed in the progeny of irradiated mature T-cell populations. In addition to this, newly arising de novo chromosome aberrations were detected in cells which possessed clonal markers of α-particle exposure and also in cells which did not show any evidence of previous exposure, suggesting ongoing genomic instability in these populations. Our findings support the usefulness and reliability of employing complex chromosome exchanges as indicators of past or ongoing exposure to high-LET radiation and demonstrate the potential applicability to evaluate health risks associated with α-particle exposure.This work was supported by the Department of Health, UK. Contract RRX95 (RMA NSDTG)

    Maladaptation and the paradox of robustness in evolution

    Get PDF
    Background. Organisms use a variety of mechanisms to protect themselves against perturbations. For example, repair mechanisms fix damage, feedback loops keep homeostatic systems at their setpoints, and biochemical filters distinguish signal from noise. Such buffering mechanisms are often discussed in terms of robustness, which may be measured by reduced sensitivity of performance to perturbations. Methodology/Principal Findings. I use a mathematical model to analyze the evolutionary dynamics of robustness in order to understand aspects of organismal design by natural selection. I focus on two characters: one character performs an adaptive task; the other character buffers the performance of the first character against perturbations. Increased perturbations favor enhanced buffering and robustness, which in turn decreases sensitivity and reduces the intensity of natural selection on the adaptive character. Reduced selective pressure on the adaptive character often leads to a less costly, lower performance trait. Conclusions/Significance. The paradox of robustness arises from evolutionary dynamics: enhanced robustness causes an evolutionary reduction in the adaptive performance of the target character, leading to a degree of maladaptation compared to what could be achieved by natural selection in the absence of robustness mechanisms. Over evolutionary time, buffering traits may become layered on top of each other, while the underlying adaptive traits become replaced by cheaper, lower performance components. The paradox of robustness has widespread implications for understanding organismal design

    A microchip optomechanical accelerometer

    Get PDF
    The monitoring of accelerations is essential for a variety of applications ranging from inertial navigation to consumer electronics. The basic operation principle of an accelerometer is to measure the displacement of a flexibly mounted test mass; sensitive displacement measurement can be realized using capacitive, piezo-electric, tunnel-current, or optical methods. While optical readout provides superior displacement resolution and resilience to electromagnetic interference, current optical accelerometers either do not allow for chip-scale integration or require bulky test masses. Here we demonstrate an optomechanical accelerometer that employs ultra-sensitive all-optical displacement read-out using a planar photonic crystal cavity monolithically integrated with a nano-tethered test mass of high mechanical Q-factor. This device architecture allows for full on-chip integration and achieves a broadband acceleration resolution of 10 \mu g/rt-Hz, a bandwidth greater than 20 kHz, and a dynamic range of 50 dB with sub-milliwatt optical power requirements. Moreover, the nano-gram test masses used here allow for optomechanical back-action in the form of cooling or the optical spring effect, setting the stage for a new class of motional sensors.Comment: 16 pages, 9 figure

    Adherence to Tuberculosis Therapy among Patients Receiving Home-Based Directly Observed Treatment: Evidence from the United Republic of Tanzania.

    Get PDF
    \ud \ud Non-adherence to tuberculosis (TB) treatment is the leading contributor to the selection of drug-resistant strains of Mycobacterium tuberculosis and subsequent treatment failure. Tanzania introduced a TB Patient Centred Treatment (PCT) approach which gives new TB patients the choice between home-based treatment supervised by a treatment supporter of their own choice, and health facility-based treatment observed by a medical professional. The aim of this study was to assess the extent and determinants of adherence to anti-TB therapy in patients opting for home-based treatment under the novel PCT approach. In this cross-sectional study, the primary outcome was the percentage of patients adherent to TB therapy as detected by the presence of isoniazid in urine (IsoScreen assay). The primary analysis followed a non-inferiority approach in which adherence could not be lower than 75%. Logistic regression was used to examine the influence of potentially predictive factors. A total of 651 new TB patients were included. Of these, 645 (99.1%) provided urine for testing and 617 patients (95.7%; 90%CI 94.3-96.9) showed a positive result. This result was statistically non-inferior to the postulated adherence level of 75% (p<0.001). Adherence to TB therapy under home-based Directly Observed Treatment can be ensured in programmatic settings. A reliable supply of medication and the careful selection of treatment supporters, who preferably live very close to the patient, are crucial success factors. Finally, we recommend a cohort study to assess the rate of adherence throughout the full course of TB treatment

    The effects of climatic fluctuations and extreme events on running water ecosystems

    Get PDF
    Most research on the effects of environmental change in freshwaters has focused on incremental changes in average conditions, rather than fluctuations or extreme events such as heatwaves, cold snaps, droughts, floods or wildfires, which may have even more profound consequences. Such events are commonly predicted to increase in frequency, intensity and duration with global climate change, with many systems being exposed to conditions with no recent historical precedent. We propose a mechanistic framework for predicting potential impacts of environmental fluctuations on running water ecosystems by scaling up effects of fluctuations from individuals to entire ecosystems. This framework requires integration of four key components: effects of the environment on individual metabolism, metabolic and biomechanical constraints on fluctuating species interactions, assembly dynamics of local food webs and mapping the dynamics of the meta-community onto ecosystem function. We illustrate the framework by developing a mathematical model of environmental fluctuations on dynamically assembling food webs. We highlight (currently limited) empirical evidence for emerging insights and theoretical predictions. For example, widely supported predictions about the effects of environmental fluctuations are: high vulnerability of species with high per capita metabolic demands such as large-bodied ones at the top of food webs; simplification of food web network structure and impaired energetic transfer efficiency; reduced resilience and top-down relative to bottom-up regulation of food web and ecosystem processes. We conclude by identifying key questions and challenges that need to be addressed to develop more accurate and predictive bio-assessments of the effects of fluctuations, and implications of fluctuations for management practices in an increasingly uncertain world

    Scallop swimming kinematics and muscle performance: modelling the effects of "within-animal" variation in temperature sensitivity

    Get PDF
    Escape behaviour was investigated in Queen scallops (Aequipecten opercularis) acclimated to 5, 10 or 15 degrees C and tested at their acclimation temperature. Scallops are active molluscs, able to escape from predators by jet-propelled swimming using a striated muscle working in opposition to an elastic hinge ligament. The first cycle of the escape response was recorded using high-speed video ( 250 Hz) and whole-animal velocity and acceleration determined. Muscle shortening velocity, force and power output were calculated using measurements of valve movement and jet area, and a simple biomechanical model. The average shortening speed of the adductor muscle had a Q(10) of 2.04, significantly reducing the duration of the jetting phase of the cycle with increased temperature. Muscle lengthening velocity and the overall duration of the clap cycle were changed little over the range 5 - 15 degrees C, as these parameters were controlled by the relatively temperature-insensitive, hinge ligament. Improvements in the average power output of the adductor muscle over the first clap cycle ( 222 vs. 139 W kg(-1) wet mass at 15 and 5 degrees C respectively) were not translated into proportional increases in overall swimming velocity, which was only 32% higher at 15 degrees C ( 0.37m s(-1)) than 5 degrees C (0.28 m s(-1))

    Mortality of Patients with Hematological Malignancy after Admission to the Intensive Care Unit

    Get PDF
    Background: The admission of patients with malignancies to an intensive care unit (ICU) still remains a matter of substantial controversy. The identification of factors that potentially influence the patient outcome can help ICU professionals make appropriate decisions. Patients and Methods: 90 adult patients with hematological malignancy (leukemia 47.8%, high-grade lymphoma 50%) admitted to the ICU were analyzed retrospectively in this single-center study considering numerous variables with regard to their influence on ICU and day-100 mortality. Results: The median simplified acute physiology score (SAPS) II at ICU admission was 55 (ICU survivors 47 vs. 60.5 for non-survivors). The overall ICU mortality rate was 45.6%. With multivariate regression analysis, patients admitted with sepsis and acute respiratory failure had a significantly increased ICU mortality (sepsis odds ratio (OR) 9.12, 95% confidence interval (CI) 1.1-99.7, p = 0.04; respiratory failure OR 13.72, 95% CI 1.39-136.15, p = 0.025). Additional factors associated with an increased mortality were: high doses of catecholamines (ICU: OR 7.37, p = 0.005; day 100: hazard ratio (HR) 2.96, p < 0.0001), renal replacement therapy (day 100: HR 1.93, p = 0.026), and high SAPS II (ICU: HR 1.05, p = 0.038; day 100: HR 1.2, p = 0.027). Conclusion: The decision for or against ICU admission of patients with hematological diseases should become increasingly independent of the underlying malignant disease

    Grassmannian flows and applications to nonlinear partial differential equations

    Full text link
    We show how solutions to a large class of partial differential equations with nonlocal Riccati-type nonlinearities can be generated from the corresponding linearized equations, from arbitrary initial data. It is well known that evolutionary matrix Riccati equations can be generated by projecting linear evolutionary flows on a Stiefel manifold onto a coordinate chart of the underlying Grassmann manifold. Our method relies on extending this idea to the infinite dimensional case. The key is an integral equation analogous to the Marchenko equation in integrable systems, that represents the coodinate chart map. We show explicitly how to generate such solutions to scalar partial differential equations of arbitrary order with nonlocal quadratic nonlinearities using our approach. We provide numerical simulations that demonstrate the generation of solutions to Fisher--Kolmogorov--Petrovskii--Piskunov equations with nonlocal nonlinearities. We also indicate how the method might extend to more general classes of nonlinear partial differential systems.Comment: 26 pages, 2 figure
    corecore